Value at risk (VAR or sometimes VaR) has been called the "new science of risk management", but you do not need to be a scientist to use VAR. Here, in part 1 of this series, we look at the idea behind VAR and the three basic methods of calculating it. In Part 2, we apply these methods to calculating VAR for a single stock or investment.

The Idea behind VAR
The most popular and traditional measure of risk is volatility. The main problem with volatility, however, is that it does not care about the direction of an investment's movement: a stock can be volatile because it suddenly jumps higher. Of course, investors are not distressed by gains! (See The Limits and Uses of Volatility.)

For investors, risk is about the odds of losing money, and VAR is based on that common-sense fact. By assuming investors care about the odds of a really big loss, VAR answers the question, "What is my worst-case scenario?" or "How much could I lose in a really bad month?"

Now let's get specific. A VAR statistic has three components: a time period, a confidence level and a loss amount (or loss percentage). Keep these three parts in mind as we give some examples of variations of the question that VAR answers:

  • What is the most I can - with a 95% or 99% level of confidence - expect to lose in dollars over the next month?
  • What is the maximum percentage I can - with 95% or 99% confidence - expect to lose over the next year?

You can see how the "VAR question" has three elements: a relatively high level of confidence (typically either 95% or 99%), a time period (a day, a month or a year) and an estimate of investment loss (expressed either in dollar or percentage terms).

Methods of Calculating VAR
Institutional investors use VAR to evaluate portfolio risk, but in this introduction we will use it to evaluate the risk of a single index that trades like a stock: the Nasdaq 100 Index, which trades under the ticker QQQQ. The QQQQ is a very popular index of the largest non-financial stocks that trade on the Nasdaq exchange.

There are three methods of calculating VAR: the historical method, the variance-covariance method and the Monte Carlo simulation.

1. Historical Method
The historical method simply re-organizes actual historical returns, putting them in order from worst to best. It then assumes that history will repeat itself, from a risk perspective.

The QQQ started trading in Mar 1999, and if we calculate each daily return, we produce a rich data set of almost 1,400 points. Let's put them in a histogram that compares the frequency of return "buckets". For example, at the highest point of the histogram (the highest bar), there were more than 250 days when the daily return was between 0% and 1%. At the far right, you can barely see a tiny bar at 13%; it represents the one single day (in Jan 2000) within a period of five-plus years when the daily return for the QQQ was a stunning 12.4%!


Notice the red bars that compose the "left tail" of the histogram. These are the lowest 5% of daily returns (since the returns are ordered from left to right, the worst are always the "left tail"). The red bars run from daily losses of 4% to 8%. Because these are the worst 5% of all daily returns, we can say with 95% confidence that the worst daily loss will not exceed 4%. Put another way, we expect with 95% confidence that our gain will exceed -4%. That is VAR in a nutshell. Let's re-phrase the statistic into both percentage and dollar terms:

  • With 95% confidence, we expect that our worst daily loss will not exceed 4%.
  • If we invest $100, we are 95% confident that our worst daily loss will not exceed $4 ($100 x -4%).

You can see that VAR indeed allows for an outcome that is worse than a return of -4%. It does not express absolute certainty but instead makes a probabilistic estimate. If we want to increase our confidence, we need only to "move to the left" on the same histogram, to where the first two red bars, at -8% and -7% represent the worst 1% of daily returns:

  • With 99% confidence, we expect that the worst daily loss will not exceed 7%.
  • Or, if we invest $100, we are 99% confident that our worst daily loss will not exceed $7.

2. The Variance-Covariance Method
This method assumes that stock returns are normally distributed. In other words, it requires that we estimate only two factors - an expected (or average) return and a standard deviation - which allow us to plot a normal distribution curve. Here we plot the normal curve against the same actual return data:


The idea behind the variance-covariance is similar to the ideas behind the historical method - except that we use the familiar curve instead of actual data. The advantage of the normal curve is that we automatically know where the worst 5% and 1% lie on the curve. They are a function of our desired confidence and the standard deviation (VARstdeviation.gif):

Confidence # of Standard Deviations (σ)
95% (high) - 1.65 x σ
99% (really high) - 2.33 x σ

The blue curve above is based on the actual daily standard deviation of the QQQ, which is 2.64%. The average daily return happened to be fairly close to zero, so we will assume an average return of zero for illustrative purposes. Here are the results of plugging the actual standard deviation into the formulas above:

Confidence # of σ Calculation Equals
95% (high) - 1.65 x σ - 1.65 x (2.64%) = -4.36%
99% (really high) - 2.33 x σ - 2.33 x (2.64%) = -6.15%

3. Monte Carlo Simulation
The third method involves developing a model for future stock price returns and running multiple hypothetical trials through the model. A Monte Carlo simulation refers to any method that randomly generates trials, but by itself does not tell us anything about the underlying methodology.

For most users, a Monte Carlo simulation amounts to a "black box" generator of random outcomes. Without going into further details, we ran a Monte Carlo simulation on the QQQ based on its historical trading pattern. In our simulation, 100 trials were conducted. If we ran it again, we would get a different result--although it is highly likely that the differences would be narrow. Here is the result arranged into a histogram (please note that while the previous graphs have shown daily returns, this graph displays monthly returns):


To summarize, we ran 100 hypothetical trials of monthly returns for the QQQ. Among them, two outcomes were between -15% and -20%; and three were between -20% and 25%. That means the worst five outcomes (that is, the worst 5%) were less than -15%. The Monte Carlo simulation therefore leads to the following VAR-type conclusion: with 95% confidence, we do not expect to lose more than 15% during any given month.

Value at Risk (VAR) calculates the maximum loss expected (or worst case scenario) on an investment, over a given time period and given a specified degree of confidence. We looked at three methods commonly used to calculate VAR. But keep in mind that two of our methods calculated a daily VAR and the third method calculated monthly VAR. In Part 2 of this series we show you how to compare these different time horizons.

To read more on this subject, see Continuously Compound Interest.

Related Articles
  1. Investing

    In Search of the Rate-Proof Portfolio

    After October’s better-than-expected employment report, a December Federal Reserve (Fed) liftoff is looking more likely than it was earlier this fall.
  2. Investing

    Time to Bring Active Back into a Portfolio?

    While stocks have rallied since the economic recovery in 2009, many active portfolio managers have struggled to deliver investor returns in excess.
  3. Investing

    What a Family Tradition Taught Me About Investing

    We share some lessons from friends and family on saving money and planning for retirement.
  4. Retirement

    Two Heads Are Better Than One With Your Finances

    We discuss the advantages of seeking professional help when it comes to managing our retirement account.
  5. Investing

    Where the Price is Right for Dividends

    There are two broad schools of thought for equity income investing: The first pays the highest dividend yields and the second focuses on healthy yields.
  6. Chart Advisor

    Now Could Be The Time To Buy IPOs

    There has been lots of hype around the IPO market lately. We'll take a look at whether now is the time to buy.
  7. Professionals

    A Day in the Life of a Hedge Fund Manager

    Learn what a typical early morning to late evening workday for a hedge fund manager consists of and looks like from beginning to end.
  8. Entrepreneurship

    Creating a Risk Management Plan for Your Small Business

    Learn how a complete risk management plan can minimize or eliminate your financial exposure through insurance and prevention solutions.
  9. Personal Finance

    How Tech Can Help with 3 Behavioral Finance Biases

    Even if you’re a finance or statistics expert, you’re not immune to common decision-making mistakes that can negatively impact your finances.
  10. Credit & Loans

    Pre-Qualified Vs. Pre-Approved - What's The Difference?

    These terms may sound the same, but they mean very different things for homebuyers.
  1. Should you calculate Value at Risk (VaR) for counterparty credit risk?

    Value at risk (VaR) calculations may be helpful for risk management when trading credit default swaps and other derivatives ... Read Full Answer >>
  2. Are secured personal loans better than unsecured loans?

    Secured loans are better for the borrower than unsecured loans because the loan terms are more agreeable. Often, the interest ... Read Full Answer >>
  3. Which mutual funds made money in 2008?

    Out of the 2,800 mutual funds that Morningstar, Inc., the leading provider of independent investment research in North America, ... Read Full Answer >>
  4. Does mutual fund manager tenure matter?

    Mutual fund investors have numerous items to consider when selecting a fund, including investment style, sector focus, operating ... Read Full Answer >>
  5. Do hedge funds invest in commodities?

    There are several hedge funds that invest in commodities. Many hedge funds have broad macroeconomic strategies and invest ... Read Full Answer >>
  6. Why do financial advisors dislike target-date funds?

    Financial advisors dislike target-date funds because these funds tend to charge high fees and have limited histories. It ... Read Full Answer >>

You May Also Like

Hot Definitions
  1. Cyber Monday

    An expression used in online retailing to describe the Monday following U.S. Thanksgiving weekend. Cyber Monday is generally ...
  2. Bar Chart

    A style of chart used by some technical analysts, on which, as illustrated below, the top of the vertical line indicates ...
  3. Take A Bath

    A slang term referring to the situation of an investor who has experienced a large loss from an investment or speculative ...
  4. Black Friday

    1. A day of stock market catastrophe. Originally, September 24, 1869, was deemed Black Friday. The crash was sparked by gold ...
  5. Turkey

    Slang for an investment that yields disappointing results or turns out worse than expected. Failed business deals, securities ...
  6. Barefoot Pilgrim

    A slang term for an unsophisticated investor who loses all of his or her wealth by trading equities in the stock market. ...
Trading Center