Volatility is critical to risk measurement. Generally, volatility refers to standard deviation, which is a dispersion measure. Greater dispersion implies greater risk, which implies higher odds of price erosion or portfolio loss  this is key information for any investor. Volatility can be used on its own, as in "the hedge fund portfolio exhibited a monthly volatility of 5%," but the term is also used in conjunction with return measures, as, for example, in the denominator of the Sharpe ratio. Volatility is also a key input in parametric value at risk (VAR), where portfolio exposure is a function of volatility. In this article, we'll show you how calculate historical volatility to determine the future risk of your investments. (For more insight, read The Uses And Limits Of Volatility.)
Tutorial: Option Volatility
Volatility is easily the most common risk measure, despite its imperfections, which include the fact that upside price movements are considered just as "risky" as downside movements. We often estimate future volatility by looking at historical volatility. To calculate historical volatility, we need to take two steps:
1. Compute a series of periodic returns (e.g. daily returns)
2. Choose a weighting scheme (e.g. unweighted scheme)
A daily periodic stock return (denoted below as u_{i}) is the return from yesterday to today. Note that if there was a dividend, we would add it to today's stock price. The following formula is used to calculate this percentage:
In regard to stock prices, however, this simple percentage change is not as helpful as the continuously compounded return. The reason for this is that we can't reliably add together the simple percentage change numbers over multiple periods, but the continuously compounded return can be scaled over a longer time frame. This is technically called being "time consistent." For stock price volatility, therefore, it is preferable to compute the continuously compounded return by using the following formula:
In the example below, we pulled a sample of Google's (NYSE:GOOG) daily closing stock prices. The stock closed at $373.36 on August 25, 2006; the prior day's close was $373.73. The continuous periodic return is therefore 0.126%, which equals the natural log (ln) of the ratio [373.26 / 373.73].
Next, we move to the second step: selecting the weighting scheme. This includes a decision on the length (or size) of our historical sample. Do we want to measure daily volatility over the last (trailing) 30 days, 360 days, or perhaps three years?
In our example, we will choose an unweighted 30day average. In other words, we are estimating average daily volatility over the last 30 days. This is calculated with the help of the formula for sample variance:
We can tell this is a formula for a sample variance because the summation is divided by (m1) instead of (m). You might expect an (m) in the denominator because that would effectively average the series. If it were an (m), this would produce the population variance. Population variance claims to have all of the data points in the entire population, but when it comes to measuring volatility, we never believe that. Any historical sample is merely a subset of a larger "unknown" population. So technically, we should use the sample variance, which uses (m1) in the denominator and produces an "unbiased estimate", to create a slightly higher variance to capture our uncertainty.
Our sample is a 30day snapshot drawn from a larger unknown (and perhaps unknowable) population. If we open MS Excel, select the thirty day range of periodic returns (i.e., the series: 0.126%, 0.080%, 1.293% and so on for thirty days), and apply the function =VARA(), we are executing the formula above. In Google's case, we get about 0.0198%. This number represents the sample daily variance over a 30day period. We take the square root of the variance to get the standard deviation. In Google's case, the square root of 0.0198% is about 1.4068%  Google's historical daily volatility.
It's OK to make two simplifying assumptions about the variance formula above. First, we could assume that the average daily return is close enough to zero that we can treat it as such. That simplifies the summation to a sum of squared returns. Second, we can replace (m1) with (m). This replaces the "unbiased estimator" with a "maximum likelihood estimate".
This simplifies the above to the following equation:
Again, these are easeofuse simplifications often made by professionals in practice. If the periods are short enough (e.g., daily returns), this formula is an acceptable alternative. In other words, the above formula is straightforward: the variance is the average of the squared returns. In the Google series above, this formula produces a variance that is virtually identical (+0.0198%). As before, don't forget to take the square root of the variance to get the volatility.
The reason this is an unweighted scheme is that we averaged each daily return in the 30day series: each day contributes an equal weight toward the average. This is common but not particularly accurate. In practice, we often want to give more weight to more recent variances and/or returns. More advanced schemes, therefore, include weighting schemes (e.g., the GARCH model, exponentially weighted moving average) that assign greater weights to more recent data
Conclusion
Because finding the future risk of an instrument or portfolio can be difficult, we often measure historical volatility and assume that "past is prologue". Historical volatility is standard deviation, as in "the stock's annualized standard deviation was 12%". We compute this by taking a sample of returns, such as 30 days, 252 trading days (in a year), three years or even 10 years. In selecting a sample size we face a classic tradeoff between the recent and the robust: we want more data but to get it, we need to go back farther in time, which may lead to the collection of data that may be irrelevant to the future. In other words, historical volatility does not provide a perfect measure, but it can help you get a better sense of the risk profile of your investments.
Check out David Harper's movie tutorial, Historical Volatility  Simple, Unweighted Average, to learn more on this topic.

Term
What are Mutually Exclusive Events?
In statistics, mutually exclusive situations involve the occurrence of one event that does not influence or cause another event. 
Mutual Funds & ETFs
ETF Analysis: PowerShares DB Commodity Tracking
Find out about the PowerShares DB Commodity Tracking ETF, and explore a detailed analysis of the fund that tracks 14 distinct commodities using futures contracts. 
Mutual Funds & ETFs
ETF Analysis: PowerShares FTSE RAFI US 1000
Find out about the PowerShares FTSE RAFI U.S. 1000 ETF, and explore detailed analysis of the fund that invests in undervalued stocks. 
Mutual Funds & ETFs
ETF Analysis: Vanguard IntermediateTerm Corp Bd
Learn about the Vanguard IntermediateTerm Corporate Bond ETF, and explore detailed analysis of the fund's characteristics, risks and historical statistics. 
Mutual Funds & ETFs
Top 3 Switzerland ETFs
Explore detailed analysis and information of the top three Swiss exchangetraded funds that offer exposure to the Swiss equities market. 
Economics
The Problem With Today’s Headline Economic Data
Headwinds have kept the U.S. growth more moderate than in the past–including leverage levels and an aging population—and the latest GDP revisions prove it. 
Economics
Explaining the Participation Rate
The participation rate is the percentage of civilians who are either employed or unemployed and looking for a job. 
Fundamental Analysis
Is India the Next Emerging Markets Superstar?
With a shift towards manufacturing and services, India could be the next emerging market superstar. Here, we provide a detailed breakdown of its GDP. 
Mutual Funds & ETFs
ETF Analysis: Guggenheim Enhanced Short Dur
Find out about the Guggenheim Enhanced Short Duration ETF, and learn detailed information about this fund that focuses on fixedincome securities. 
Mutual Funds & ETFs
ETF Analysis: iShares Morningstar SmallCap Value
Find out about the Shares Morningstar SmallCap Value ETF, and learn detailed information about this exchangetraded fund that focuses on smallcap equities.

Cost Accounting
A type of accounting process that aims to capture a company's ... 
ZeroSum Game
A situation in which one person’s gain is equivalent to another’s ... 
Supply
A fundamental economic concept that describes the total amount ... 
PrincipalAgent Problem
The principalagent problem develops when a principal creates ... 
Discount Bond
A bond that is issued for less than its par (or face) value, ... 
Compound Annual Growth Rate  CAGR
The Compound Annual Growth Rate (CAGR) is the mean annual growth ...

How does the risk of investing in the metals and mining sector compare to the broader ...
The metals and mining sector faces specific investment risks, such as highly capital intensive projects, regulatory changes, ... Read Full Answer >> 
What assumptions are made when conducting a ttest?
The common assumptions made when doing a ttest include those regarding the scale of measurement, random sampling, normality ... Read Full Answer >> 
What is the utility function and how is it calculated?
In economics, utility function is an important concept that measures preferences over a set of goods and services. Utility ... Read Full Answer >> 
What are some of the more common types of regressions investors can use?
The most common types of regression an investor can use are linear regressions and multiple linear regressions. Regressions ... Read Full Answer >> 
What types of assets lower portfolio variance?
Assets that have a negative correlation with each other reduce portfolio variance. Variance is one measure of the volatility ... Read Full Answer >> 
When is it better to use systematic over simple random sampling?
Under simple random sampling, a sample of items is chosen randomly from a population, and each item has an equal probability ... Read Full Answer >>