Volatility is the most common measure of risk, but it comes in several flavors. In a previous article, we showed how to calculate simple historical volatility. (To read this article, see Using Volatility To Gauge Future Risk.) We used Google's actual stock price data in order to compute daily volatility based on 30 days of stock data. In this article, we will improve on simple volatility and discuss the exponentially weighted moving average (EWMA).
Historical Vs. Implied Volatility
First, let's put this metric into a bit of perspective. There are two broad approaches: historical and implied (or implicit) volatility. The historical approach assumes that past is prologue; we measure history in the hope that it is predictive. Implied volatility, on the other hand, ignores history; it solves for the volatility implied by market prices. It hopes that the market knows best and that the market price contains, even if implicitly, a consensus estimate of volatility. (For related reading, see The Uses And Limits Of Volatility.)
If we focus on just the three historical approaches (on the left above), they have two steps in common:
 Calculate the series of periodic returns
 Apply a weighting scheme
First, we calculate the periodic return. That's typically a series of daily returns where each return is expressed in continually compounded terms. For each day, we take the natural log of the ratio of stock prices (i.e., price today divided by price yesterday, and so on).
This produces a series of daily returns, from u_{i} to u_{im}, depending on how many days (m = days) we are measuring.
That gets us to the second step: This is where the three approaches differ. In the previous article (Using Volatility To Gauge Future Risk), we showed that under a couple of acceptable simplifications, the simple variance is the average of the squared returns:
Notice that this sums each of the periodic returns, then divides that total by the number of days or observations (m). So, it's really just an average of the squared periodic returns. Put another way, each squared return is given an equal weight. So if alpha (a) is a weighting factor (specifically, a = 1/m), then a simple variance looks something like this:
The EWMA Improves on Simple Variance
The weakness of this approach is that all returns earn the same weight. Yesterday's (very recent) return has no more influence on the variance than last month's return. This problem is fixed by using the exponentially weighted moving average (EWMA), in which more recent returns have greater weight on the variance.
The exponentially weighted moving average (EWMA) introduces lambda, which is called the smoothing parameter. Lambda must be less than one. Under that condition, instead of equal weights, each squared return is weighted by a multiplier as follows:
For example, RiskMetrics^{TM, }a financial risk management company, tends to use a lambda of 0.94, or 94%. In this case, the first (most recent) squared periodic return is weighted by (10.94)(.94)^{0} = 6%. The next squared return is simply a lambdamultiple of the prior weight; in this case 6% multiplied by 94% = 5.64%. And the third prior day's weight equals (10.94)(0.94)^{2} = 5.30%.
That's the meaning of "exponential" in EWMA: each weight is a constant multiplier (i.e. lambda, which must be less than one) of the prior day's weight. This ensures a variance that is weighted or biased toward more recent data. (To learn more, check out the Excel Worksheet for Google's Volatility.) The difference between simply volatility and EWMA for Google is shown below.
Simple volatility effectively weighs each and every periodic return by 0.196% as shown in Column O (we had two years of daily stock price data. That is 509 daily returns and 1/509 = 0.196%). But notice that Column P assigns a weight of 6%, then 5.64%, then 5.3% and so on. That's the only difference between simple variance and EWMA.
Remember: After we sum the entire series (in Column Q) we have the variance, which is the square of the standard deviation. If we want volatility, we need to remember to take the square root of that variance.
What's the difference in daily volatility between the variance and EWMA in Google's case? It's significant: The simple variance gave us a daily volatility of 2.4% but the EWMA gave a daily volatility of only 1.4% (see the spreadsheet for details). Apparently, Google's volatility settled down more recently; therefore, a simple variance might be artificially high.
Today's Variance Is a Function of Pior Day's Variance
You'll notice we needed to compute a long series of exponentially declining weights. We won't do the math here, but one of the best features of the EWMA is that the entire series conveniently reduces to a recursive formula:
Recursive means that today's variance references (i.e. is a function of the prior day's variance). You can find this formula in the spreadsheet also, and it produces the exact same result as the longhand calculation! It says: Today's variance (under EWMA) equals yesterday's variance (weighted by lambda) plus yesterday's squared return (weighed by one minus lambda). Notice how we are just adding two terms together: yesterday's weighted variance and yesterdays' weighted, squared return.
Even so, lambda is our smoothing parameter. A higher lambda (e.g., like RiskMetric's 94%) indicates slower decay in the series  in relative terms, we are going to have more data points in the series and they are going to "fall off" more slowly. On the other hand, if we reduce the lambda, we indicate higher decay: the weights fall off more quickly and, as a direct result of the rapid decay, fewer data points are used. (In the spreadsheet, lambda is an input, so you can experiment with its sensitivity).
Summary
Volatility is the instantaneous standard deviation of a stock and the most common risk metric. It is also the square root of variance. We can measure variance historically or implicitly (implied volatility). When measuring historically, the easiest method is simple variance. But the weakness with simple variance is all returns get the same weight. So we face a classic tradeoff: we always want more data but the more data we have the more our calculation is diluted by distant (less relevant) data. The exponentially weighted moving average (EWMA) improves on simple variance by assigning weights to the periodic returns. By doing this, we can both use a large sample size but also give greater weight to more recent returns.
(To view a movie tutorial on this topic, visit the Bionic Turtle.)

Investing
Time to Bring Active Back into a Portfolio?
While stocks have rallied since the economic recovery in 2009, many active portfolio managers have struggled to deliver investor returns in excess. 
Investing
What a Family Tradition Taught Me About Investing
We share some lessons from friends and family on saving money and planning for retirement. 
Retirement
Two Heads Are Better Than One With Your Finances
We discuss the advantages of seeking professional help when it comes to managing our retirement account. 
Investing
Where the Price is Right for Dividends
There are two broad schools of thought for equity income investing: The first pays the highest dividend yields and the second focuses on healthy yields. 
Chart Advisor
Now Could Be The Time To Buy IPOs
There has been lots of hype around the IPO market lately. We'll take a look at whether now is the time to buy. 
Professionals
A Day in the Life of a Hedge Fund Manager
Learn what a typical early morning to late evening workday for a hedge fund manager consists of and looks like from beginning to end. 
Entrepreneurship
Creating a Risk Management Plan for Your Small Business
Learn how a complete risk management plan can minimize or eliminate your financial exposure through insurance and prevention solutions. 
Personal Finance
How Tech Can Help with 3 Behavioral Finance Biases
Even if you’re a finance or statistics expert, you’re not immune to common decisionmaking mistakes that can negatively impact your finances. 
Investing Basics
5 Tips For Diversifying Your Portfolio
A diversified portfolio will protect you in a tough market. Get some solid tips here! 
Entrepreneurship
Identifying And Managing Business Risks
There are a lot of risks associated with running a business, but there are an equal number of ways to prepare for and manage them.

Are secured personal loans better than unsecured loans?
Secured loans are better for the borrower than unsecured loans because the loan terms are more agreeable. Often, the interest ... Read Full Answer >> 
Which mutual funds made money in 2008?
Out of the 2,800 mutual funds that Morningstar, Inc., the leading provider of independent investment research in North America, ... Read Full Answer >> 
Does mutual fund manager tenure matter?
Mutual fund investors have numerous items to consider when selecting a fund, including investment style, sector focus, operating ... Read Full Answer >> 
Why do financial advisors dislike targetdate funds?
Financial advisors dislike targetdate funds because these funds tend to charge high fees and have limited histories. It ... Read Full Answer >> 
Why are mutual funds subject to market risk?
Like all securities, mutual funds are subject to market, or systematic, risk. This is because there is no way to predict ... Read Full Answer >> 
Why have mutual funds become so popular?
Mutual funds have become an incredibly popular option for a wide variety of investors. This is primarily due to the automatic ... Read Full Answer >>