*Advanced Bond Concepts*tutorial.)

**In 1938, Frederick Macaulay termed the effective-maturity concept the duration of thebond, and suggested that duration be computed as the weighted average of the times to each coupon or principal payment made by the bond. Macaulay's duration formula is as follows:**

Duration Defined

Duration Defined

- D is the bond's duration
- C is the periodic coupon payment
- F is the face value at maturity (in dollars)
- T is the number of periods until maturity
- r is the periodic yield to maturity
- t is the period in which the coupon is received

**Duration for Portfolio Management**

Duration is key in fixed-income portfolio management for the following three reasons:

- It is a simple summary statistic of the effective average maturity of a portfolio.
- It is an essential tool in immunizing portfolios from interest rate risk.
- Duration is an estimate of the interest rate sensitivity of a portfolio.

- The duration of a zero-coupon bond equals its time to maturity.
- Holding maturity constant, a bond's duration is lower when the coupon rate is higher. This rule is due to the impact of early higher coupon payments.
- Holding the coupon rate constant, a bond's duration generally increases with time to maturity. This property of duration is fairly intuitive; however, duration does not always increase with time to maturity. For some deep-discount bonds, duration may fall with increases in maturity.
- Holding other factors constant, the duration of a coupon bond is higher when the bond's yield to maturity is lower. This principle applies to coupon bonds. For zero-coupon bonds, duration equals time to maturity, regardless of the yield to maturity.
- The duration of a level perpetuity is (1 + y)/y. For example, at a 10% yield, the duration of perpetuity that pays $100 once a year forever will equal 1.10/.10 = 11 years, but at an 8% yield it will equal 1.08/.08 = 13.5 years. This principle makes it obvious that maturity and duration can differ substantially. The maturity of the perpetuity is infinite, whereas the duration of the instrument at a 10% yield is only 11 years. The present-value-weighted cash flow early on in the life of the perpetuity dominates the computation of duration. (For more information on portfolio management, read
*Equity Portfolio Management Mechanics*and*Preparing For A Career As A Portfolio Manager*.)

**Duration for Gap Management**

Many banks have a natural mismatch between asset and liability maturities. Bank liabilities are primarily the deposits owed to customers, most of which are very short-term in nature and of low duration. Bank assets by contrast are composed largely of outstanding commercial and consumer loans or mortgages. These assets are of longer duration and their values are more sensitive to interest rate fluctuations. In periods when interest rates increase unexpectedly, banks can suffer serious decreases in net worth if their assets fall in value by more than their liabilities.

*Playing The Gap*.)

One way to view gap management is as an attempt by the bank to equate the durations of assets and liabilities to effectively immunize its overall position from interest rate movements. Because bank assets and liabilities are roughly equal in size, if their durations are also equal, any change in interest rates will affect the value of assets and liabilities equally. Interest rate changes would have no effect on net worth. Therefore, net worth immunization requires a portfolio duration, or gap, of zero. (To learn more about bank assets and liabilities, read

*Analyzing A Bank's Financial Statements*.)

Institutions with future fixed obligations, such as pension funds and insurance companies, are different from banks in that they think more in terms of future commitments. Pension funds, for example, have an obligation to provide workers with a flow of income upon retirement and must have sufficient funds available to meet this commitment. As interest rates fluctuate, both the value of the assets held by the fund and the rate at which those assets generate income fluctuate. The portfolio manager, therefore, may want to protect (immunize) the future accumulated value of the fund at some target date against interest-rate movements. The idea behind immunization is that with duration-matched assets and liabilities, the ability of the asset portfolio to meet the firm's obligations should be unaffected by interest rate movements. (Read more about pension funds' obligations in

*Analyzing Pension Risk*.)

**Unfortunately, duration has limitations when used as a measure of interest rate sensitivity. The statistic calculates a linear relationship between price and yield changes in bonds. In reality, the relationship between the changes in price and yield is convex. In Figure 1, the curved line represents the change in prices given a change in yields. The straight line, tangent to the curve, represents the estimated change in price via the duration statistic. The shaded area shows the difference between the duration estimate and the actual price movement. As indicated, the larger the change in interest rates, the larger the error in estimating the price change of the bond.**

Convexity

Convexity

Figure 1 |

- C is convexity
- B is the bond price
- r is the interest rate
- d is duration

*Call Features: Don't Get Caught Off Guard*and

*Corporate Bonds: An Introduction To Credit Risk*.)

**Conclusion**

Interest rates are constantly changing and add a level of uncertainty to fixed-income investing. Duration and convexity allow investors to quantify this uncertainty and are useful tools in the management of fixed-income portfolios.

For further reading for the fixed-income investor, see

*Creating The Modern Fixed-Income Portfolio*and

*Common Mistakes By Fixed-Income Investors*.