Game theory is the process of modeling the strategic interaction between two or more players in a situation containing set rules and outcomes. While used in a number of disciplines, game theory is most notably used as a tool within the study of economics. The economic application of game theory can be a valuable tool to aide in the fundamental analysis of industries, sectors and any strategic interaction between two or more firms. Here, we'll take an introductory look at game theory and the terms involved, and introduce you to a simple method of solving games, called backwards induction.

Any time we have a situation with two or more players that involves known payouts or quantifiable consequences, we can use game theory to help determine the most likely outcomes.
Let's start out by defining a few terms commonly used in the study of game theory:

  • Game: Any set of circumstances that has a result dependent on the actions of two of more decision makers ("players")
  • Players: A strategic decision maker within the context of the game
  • Strategy: A complete plan of action a player will take given the set of circumstances that might arise within the game
  • Payoff: The payout a player receives from arriving at a particular outcome. The payout can be in any quantifiable form, from dollars to utility.
  • Information Set: The information available at a given point in the game. The term information set is most usually applied when the game has a sequential component.
  • Equilibrium: The point in a game where both players have made their decisions and an outcome is reached.

As with any concept in economics, there is the assumption of rationality. There is also an assumption of maximization. It is assumed that players within the game are rational and will strive to maximize their payoffs in the game. (The question of rationality has been applied to investor behavior as well. Read Understanding Investor Behavior to learn more.)

When examining games that are already set up, it is assumed on your behalf that the payouts listed include the sum of all payoffs that are associated with that outcome. This will exclude any "what if" questions that may arise.

The number of players in a game can theoretically be infinite, but most games will be put into the context of two players. One of the simplest games is a sequential game involving two players.

Solving Sequential Games Using Backwards Induction
Below is a simple sequential game between two players. The labels with Player 1 and two within them are the information sets for players one or two, respectively. The numbers in the parentheses at the bottom of the tree are the payoffs at each respective point, in the format (Player 1, Player 2). The game is also sequential, so Player 1 makes the first decision (left or right) and Player 2 makes its decision after Player 1 (up or down).

Figure 1

Backwards induction, like all game theory, uses the assumptions of rationality and maximization, meaning that Player 2 will maximize his payoff in any given situation. At either information set we have two choices, four in all. By eliminating the choices that Player 2 will not choose, we can narrow down our tree. In this way, we will bold the lines that maximize the player's payoff at the given information set.

Figure 2

After this reduction, Player 1 can maximize its payoffs now that Player 2's choices are made known. The result is an equilibrium found by backwards induction of Player 1 choosing "right" and Player 2 choosing "up". Below is the solution to the game with the equilibrium path bolded.

Figure 3

For example, one could easily set up a game similar to the one above using companies as the players. This game could include product release scenarios. If Company 1 wanted to release a product, what might Company 2 do in response? Will Company 2 release a similar competing product? By forecasting sales of this new product in different scenarios, we can set up a game to predict how events might unfold. Below is an alter-example of how one might model such a game.

Figure 4

By using simple methods of game theory, we can solve for what would be a confusing array of outcomes in a real-world situation. Using game theory as a tool for financial analysis can be very helpful in sorting out potentially messy real-world situations, from mergers to product releases.

Related Articles
  1. Investing Basics

    What Does In Specie Mean?

    In specie describes the distribution of an asset in its physical form instead of cash.
  2. Economics

    Calculating Cross Elasticity of Demand

    Cross elasticity of demand measures the quantity demanded of one good in response to a change in price of another.
  3. Investing Basics

    3 Key Signs Of A Market Top

    When stocks rise or fall, the financial fate of investors change, as well. There are certain signs that can reveal a stock’s course, and investors don’t need to be experts to spot them.
  4. Investing Basics

    Tops Tips for Trading ETFs

    A look at two different trading strategies for ETFs - one for investors and the other for active traders.
  5. Fundamental Analysis

    Emerging Markets: Analyzing Colombia's GDP

    With a backdrop of armed rebels and drug cartels, the journey for the Colombian economy has been anything but easy.
  6. Investing News

    6 Signs You Are Addicted To Investing

    An addiction to trading can ruin your life and relationships. Not to mention the monetary costs. There are telltale signs that you've gone too far.
  7. Fundamental Analysis

    Emerging Markets: Analyzing Chile's GDP

    Chile has become one of the great economic success stories of Latin America.
  8. Investing

    Watch Your Duration When Rates Rise

    While recent market volatility is leading investors to look for the nearest exit, here are some suggestions for bond exposure in attractive sectors.
  9. Economics

    Explaining Fair Market Value

    Fair market value is the price at which a buyer and seller are willing to exchange a good.
  10. Economics

    Explaining Capital Flows

    The movement of money for investing, trade or business production, is commonly referred to as capital flows.
  1. What is the difference between a dominant strategy solution and a Nash equilibrium ...

    Game theory is the science of strategy in situations that involve more than one actor. This can include actual games, military ... Read Full Answer >>
  2. How do modern corporations deal with agency problems?

    Agency problems – also known as principal-agent problems or asymmetric information-driven conflicts of interest – are inherent ... Read Full Answer >>
  3. How do mutual funds split?

    Mutual funds split in the same way that individual stocks split, but less often. Like a stock split, mutual fund splits do ... Read Full Answer >>
  4. What is the utility function and how is it calculated?

    In economics, utility function is an important concept that measures preferences over a set of goods and services. Utility ... Read Full Answer >>
  5. What does marginal utility tell us about consumer choice?

    In microeconomics, utility represents a way to relate the amount of goods consumed to the amount of happiness or satisfaction ... Read Full Answer >>
  6. What is the difference between JIT (just in time) and CMI (customer managed inventory)?

    Just-in-time (JIT) inventory management focuses solely on the need to replenish inventory only when it is required, reducing ... Read Full Answer >>

You May Also Like

Hot Definitions
  1. Zero-Sum Game

    A situation in which one person’s gain is equivalent to another’s loss, so that the net change in wealth or benefit is zero. ...
  2. Capitalization Rate

    The rate of return on a real estate investment property based on the income that the property is expected to generate.
  3. Gross Profit

    A company's total revenue (equivalent to total sales) minus the cost of goods sold. Gross profit is the profit a company ...
  4. Revenue

    The amount of money that a company actually receives during a specific period, including discounts and deductions for returned ...
  5. Normal Profit

    An economic condition occurring when the difference between a firm’s total revenue and total cost is equal to zero.
  6. Operating Cost

    Expenses associated with the maintenance and administration of a business on a day-to-day basis.
Trading Center
You are using adblocking software

Want access to all of Investopedia? Add us to your “whitelist”
so you'll never miss a feature!