If you've ever wondered how two or more things relate to each other, or if you've ever had your boss ask you to create a forecast or analyze relationships between variables, then learning regression would be worth your time. In this article, you'll learn the basics of simple linear regression - a tool commonly used in forecasting and financial analysis. We will begin by learning the core principles of regression, first learning about covariance and correlation, and then move on to building and interpreting a regression output. A lot of software such as Microsoft Excel can do all the regression calculations and outputs for you, but it is still important to learn the underlying mechanics.

At the center of regression is the relationship between two variables, called the dependent and independent variables. For instance, suppose you want to forecast sales for your company and you've concluded that your company's sales go up and down depending on changes in GDP. The sales you are forecasting would be the dependent variable because their value "depends" on the value of GDP, and the GDP would be the independent variable. You would then need to determine the strength of the relationship between these two variables in order to forecast sales. If GDP increases/decreases by 1%, how much will your sales increase or decrease?


The formula to calculate the relationship between two variables is called covariance. This calculation shows you the direction of the relationship as well as its relative strength. If one variable increases and the other variable tends to also increase, the covariance would be positive. If one variable goes up and the other tends to go down, then the covariance would be negative. The actual number you get from calculating this can be hard to interpret because it isn't standardized. A covariance of five, for instance, can be interpreted as a positive relationship, but the strength of the relationship can only be said to be stronger than if the number was four or weaker than if the number was six.

Correlation Coefficient

We need to standardize the covariance in order to allow us to better interpret and use it in forecasting, and the result is the correlation calculation. The correlation calculation simply takes the covariance and divides it by the product of the standard deviation of the two variables. This will bound the correlation between a value of -1 and +1. A correlation of +1 can be interpreted to suggest that both variables move perfectly positively with each other, and a -1 implies they are perfectly negatively correlated. In our previous example, if the correlation is +1 and the GDP increases by 1%, then sales would increase by 1%. If the correlation is -1, a 1% increase in GDP would result in a 1% decrease in sales - the exact opposite.

Regression Equation
Now that we know how the relative relationship between the two variables is calculated, we can develop a regression equation to forecast or predict the variable we desire. Below is the formula for a simple linear regression. The "y" is the value we are trying to forecast, the "b" is the slope of the regression, the "x" is the value of our independent value, and the "a" represents the y-intercept. The regression equation simply describes the relationship between the dependent variable (y) and the independent variable (x).

The intercept, or "a", is the value of y (dependent variable) if the value of x (independent variable) is zero. So if there was no change in GDP, your company would still make some sales - this value, when the change in GDP is zero, is the intercept. Take a look at the graph below to see a graphical depiction of a regression equation. In this graph, there are only five data points represented by the five dots on the graph. Linear regression attempts to estimate a line that best fits the data, and the equation of that line results in the regression equation.

Figure 1: Line of best fit
Source: Investopedia, 2009.

Now that you understand some of the background that goes into regression analysis, let's do a simple example using Excel's regression tools. We'll build on the previous example of trying to forecast next year's sales based on changes in GDP. The next table lists some artificial data points, but these numbers can be easily accessible in real life.

Year Sales GDP
2005 100 1.00%
2006 250 1.90%
2007 275 2.40%
2008 200 2.60%
2009 300 2.90%

Just eyeballing the table, you can see that there is going to be a positive correlation between sales and GDP. Both tend to go up together. Using Excel, all you have to do is click the Tools drop-down menu, select Data Analysis, and from there choose Regression. The popup box is easy to fill in from there; your Input Y Range is your "Sales" column and your Input X Range is the change in GDP column; choose the output range for where you want the data to show up on your spreadsheet and press OK. You should see something similar to what is given in the table below

Regression Statistics Coefficients
Multiple R 0.8292243 Intercept 34.58409
R Square
0.687613 GDP 88.15552
R Square
0.583484 - -
Standard Error 51.021807 - -
Observations 5 - -

The major outputs you need to be concerned about for simple linear regression are the R-squared, the intercept and the GDP coefficient. The R-squared number in this example is 68.7% - this shows how well our model predicts or forecasts the future sales. Next we have an intercept of 34.58, which tells us that if the change in GDP was forecasted to be zero, our sales would be about 35 units. And lastly, the GDP correlation coefficient of 88.15 tells us that if GDP increases by 1%, sales will likely go up by about 88 units.

So how would you use this simple model in your business? Well if your research leads you to believe that the next GDP change will be a certain percentage, you can plug that percentage into the model and generate a sales forecast. This can help you develop a more objective plan and budget for the upcoming year. Of course this is just a simple regression and there are models that you can build that use several independent variables called multiple linear regressions. But multiple linear regressions are more complicated and have several issues that would need another article to discuss.

Related Articles
  1. Fundamental Analysis

    Guide To Excel For Finance

    Formulas, functions and features you need to know when using Excel for financial analysis.
  2. Professionals

    Microsoft Excel Features For The Financially Literate

    Here are some of Excel's functions and features that a financial professional can use to make his or her job more efficient.
  3. Forex Education

    How To Trade Currency And Commodity Correlations

    Relationships between currencies and commodities exist throughout the financial markets. Find out how to trade these trends.
  4. Forex Education

    Improve Your Investing With Excel

    Excel is a useful tool to assist with investment organization and evaluation. Find out how to use it.
  5. Trading Systems & Software

    Backtesting And Forward Testing: The Importance Of Correlation

    Correlations between backtesting and forward performance testing results can help you optimize your trading system.
  6. Forex Education

    Using Currency Correlations To Your Advantage

    Knowing the relationships between pairs can help control risk exposure and maximize profits.
  7. Entrepreneurship

    7 HR Basics for Small Businesses

    Whether or not you are a fan of human resources, every employer needs to know the answers to these questions.
  8. Entrepreneurship

    Identifying And Managing Business Risks

    There are a lot of risks associated with running a business, but there are an equal number of ways to prepare for and manage them.
  9. Entrepreneurship

    4 Most Successful Indiegogo Campaigns

    Learn about some of the most successful crowdfunding campaigns on Indiegogo, which raised millions of dollars for everything from electric bikes to beehives.
  10. Entrepreneurship

    How an Internet Sales Tax Will Affect Your Small Business

    Learn about how the Marketplace Fairness Act may impact small business owners should it pass in the House and what the act requires from business owners.
  1. What is the difference between business intelligence and business analytics?

    Business intelligence and business analytics share the same goal - to help firms make better decisions through actionable ... Read Full Answer >>
  2. What kind of training do I need for a career in business analytics?

    There is rising demand and competition for data analytics in business. To build a career, prospective analysts should earn ... Read Full Answer >>
  3. Do working capital funds expire?

    While working capital funds do not expire, the working capital figure does change over time. This is because it is calculated ... Read Full Answer >>
  4. How does escheatment impact a company?

    In recent years, state governments have become increasingly aggressive in enforcing escheatment laws. As a result, many businesses ... Read Full Answer >>
  5. How much working capital does a small business need?

    The amount of working capital a small business needs to run smoothly depends largely on the type of business, its operating ... Read Full Answer >>
  6. What does low working capital say about a company's financial prospects?

    When a company has low working capital, it can mean one of two things. In most cases, low working capital means the business ... Read Full Answer >>

You May Also Like

Hot Definitions
  1. Quick Ratio

    The quick ratio is an indicator of a company’s short-term liquidity. The quick ratio measures a company’s ability to meet ...
  2. Black Tuesday

    October 29, 1929, when the DJIA fell 12% - one of the largest one-day drops in stock market history. More than 16 million ...
  3. Black Monday

    October 19, 1987, when the Dow Jones Industrial Average (DJIA) lost almost 22% in a single day. That event marked the beginning ...
  4. Monetary Policy

    Monetary policy is the actions of a central bank, currency board or other regulatory committee that determine the size and ...
  5. Indemnity

    Indemnity is compensation for damages or loss. Indemnity in the legal sense may also refer to an exemption from liability ...
  6. Discount Bond

    A bond that is issued for less than its par (or face) value, or a bond currently trading for less than its par value in the ...
Trading Center