Some of the basic advantages of using the binomial model are:

- multiple-period view
- transparency
- ability to incorporate probabilities

**Multiple-Period View**

The binomial model enables a multi-period view of the underlying asset price as well as the price of the option. In contrast to the Black-Scholes model, which provides a numerical result based on inputs, the binomial model allows for the calculation of the asset and the option for multiple periods along with the range of possible results for each period (see below).

The advantage of this multi-period view is that the user can visualize the change in asset price from period to period and evaluate the option based on making decisions at different points in time. For an American option, which can be exercised at any time before the expiration date, the binomial model can provide insight into when exercising the option may look attractive and when it should be held for longer periods. By looking at the binomial tree of values, one can determine in advance when a decision on exercise may occur. If the option has a positive value, there is the possibility of exercise, whereas if it has a value less than zero, it should he held for longer periods.

**Transparency**

Closely related to the multi-period review is the ability of the binomial model to provide transparency into the underlying value of the asset and the option as it progresses through time. The Black-Scholes model has five inputs:

- Risk-free rate
- Exercise price
- Current price of asset
- Time to maturity
- Implied volatility of the asset price

**Incorporating Probabilities**

The basic method of calculating the binomial option model is to use the same probability each period for success and failure until option expiration. However, one can actually incorporate different probabilities for each period based on new information obtained as time passes.

For example, there may be a 50/50 chance that the underlying asset price can increase or decrease by 30% in one period. For the second period, however, the probability that the underlying asset price will increase may grow to 70/30. Let's say we are evaluating an oil well; we are not sure what the value of that oil well is, but there is a 50/50 chance that the price will go up. If oil prices go up in Period 1, making the oil well more valuable, and the market fundamentals now point to continued increases in oil prices, the probability of further appreciation in price may now be 70%. The binomial model allows for this flexibility; the Black-Scholes model does not.

**Developing The Model**

The simplest binomial model will have two expected returns, whose probabilities add up to 100%. In our example, there are two possible outcomes for the oil well at each point in time. A more complex version could have three or more different outcomes, each of which is given a probability of occurrence.

To calculate the returns per period starting from time zero (now), we must make a determination of the value of the underlying asset one period from now. In this example, we will assume the following:

- Price of underlying asset (P) : $500
- Call option exercise price (K) : $600
- Risk-free rate for the period: 1%
- Price change each period: 30% up or down

Assume there is a 50% chance of going up and a 50% chance of going down. Using the Period 1 values as an example, this calculates out as [max($650-600, 0)*50%]+[max(350-600,0)*50%]=50*50%+0*50%= $25. To get the current value of the call option we need to discount the $25 in Period 1 back to Period 0, which is $25/(1+1%)=$24.75. You can now see that if the probabilities are altered, the expected value of the underlying asset will also change. If the probability should be changed, it can also be changed for each subsequent period and does not necessarily have to remain the same throughout.

The binomial model can be extended easily to multiple periods. Although the Black-Scholes model can calculate the result of an extended expiration date, the binomial model extends the decision points to multiple periods.

**Uses For The Binomial Model**

Besides being used for calculating the value of an option, the binomial model can also be used for projects or investments with a high degree of uncertainty, capital-budgeting and resource-allocation decisions, as well as projects with multiple periods or an embedded option to either continue or abandon at certain points in time.

One simple example is a project that entails drilling for oil. The uncertainty of this type of project arises due to the lack of transparency of whether the land being drilled has any oil at all, the amount of oil that can be drilled, if oil is found and the price at which the oil can be sold once extracted.

The binomial option model can assist in making decisions at each point of the oil drilling project. For example, assume we decide to drill, but the oil well will only be profitable if we find enough oil and the price of oil exceeds a certain amount. It will take one full period to determine how much oil we can extract as well as the price of oil at that point in time. After the first period (one year, for example), we can decide based on these two data points whether to continue to drill or abandon the project. These decisions can be continuously made until a point is reached where there is no value to drilling, at which time the well will be abandoned.

**The Bottom Line**

The binomial model allows multi-period views of the underlying asset price and the price of the option for multiple periods as well as the range of possible results for each period, offering a more detailed view. While both the Black-Scholes model and the binomial model can be used to value options, the binomial model simply has a broader range of applications, is more intuitive and is easier to use.