Quantitative Methods - Advanced Probability Concepts

Covariance is a measure of the relationship between two random variables, designed to show the degree of co-movement between them. Covariance is calculated based on the probability-weighted average of the cross-products of each random variable's deviation from its own expected value. A positive number indicates co-movement (i.e. the variables tend to move in the same direction); a value of 0 indicates no relationship, and a negative covariance shows that the variables move in the opposite direction.

The process for actually computing covariance values is complicated and time-consuming, and it is not likely to be covered on a CFA exam question. Although the detailed formulas and examples of computations are presented in the reference text, for most people, spending too much valuable study time absorbing such detail will have you bogged down with details that are unlikely to be tested.

Correlation is a concept related to covariance, as it also gives an indication of the degree to which two random variables are related, and (like covariance) the sign shows the direction of this relationship (positive (+) means that the variables move together; negative (-) means they are inversely related). Correlation of 0 means that there is no linear relationship one way or the other, and the two variables are said to be unrelated.

A correlation number is much easier to interpret than covariance because a correlation value will always be between -1 and +1.

  • -1 indicates a perfectly inverse relationship (a unit change in one means that the other will have a unit change in the opposite direction)
  • +1 means a perfectly positive linear relationship (unit changes in one always bring the same unit changes in the other).

Moreover, there is a uniform scale from -1 to +1 so that as correlation values move closer to 1, the two variables are more closely related. By contrast, a covariance value between two variables could be very large and indicate little actual relationship, or look very small when there is actually a strong linear correlation.

Correlation is defined as the ratio of the covariance between two random variables and the product of their two standard deviations, as presented in the following formula:

Formula 2.24
Correlation (A, B) = _____Covariance (A, B)
Standard Deviation (A)* Standard Deviation (B)

As a result: Covariance (A, B) = Correlation (A, B)*Standard Deviation (A)*Standard Deviation (B)

Both correlation and covariance with these formulas are likely to be required in a calculation in which the other terms are provided. Such an exercise simply requires remembering the relationship, and substituting the terms provided. For example, if a covariance between two numbers of 30 is given, and standard deviations are 5 and 15, the correlation would be 30/(5)*(15) = 0.40. If you are given a correlation of 0.40 and standard deviations of 5 and 15, the covariance would be (0.4)*(5)*(15), or 30.

Expected Return, Variance and Standard Deviation of a Portfolio
Expected return is calculated as the weighted average of the expected returns of the assets in the portfolio, weighted by the expected return of each asset class. For a simple portfolio of two mutual funds, one investing in stocks and the other in bonds, if we expect the stock fund to return 10% and the bond fund to return 6%, and our allocation is 50% to each asset class, we have:

Expected return (portfolio) = (0.1)*(0.5) + (0.06)*(0.5) = 0.08, or 8%

Variance 2) is computed by finding the probability-weighted average of squared deviations from the expected value.

Example: Variance
In our previous example on making a sales forecast, we found that the expected value was $14.2 million. Calculating variance starts by computing the deviations from $14.2 million, then squaring:

Scenario Probability Deviation from Expected Value Squared
1 0.1 (16.0 - 14.2) = 1.8 3.24
2 0.30 (15.0 - 14.2) = 0.8 0.64
3 0.30 (14.0 - 14.2) = - 0.2 0.04
4 0.30 (13.0 - 14.2) = - 1.2 1.44

Variance weights each squared deviation by its probability: (0.1)*(3.24) + (0.3)*(0.64) + (0.3)*(0.04) + (0.3)*(1.44) = 0.96

The variance of return is a function of the variance of the component assets as well as the covariance between each of them. In modern portfolio theory, a low or negative correlation between asset classes will reduce overall portfolio variance. The formula for portfolio variance in the simple case of a two-asset portfolio is given by:

Formula 2.25
Portfolio Variance = w2A2(RA) + w2B2(RB) + 2*(wA)*(wB)*Cov(RA, RB)
Where: wA and wB are portfolio weights, σ2(RA) and σ2(RB) are variances and
Cov(RA, RB) is the covariance

Example: Portfolio Variance
Data on both variance and covariance may be displayed in a covariance matrix. Assume the following covariance matrix for our two-asset case:

Stock Bond
Stock 350 80
Bond 80

From this matrix, we know that the variance on stocks is 350 (the covariance of any asset to itself equals its variance), the variance on bonds is 150 and the covariance between stocks and bonds is 80. Given our portfolio weights of 0.5 for both stocks and bonds, we have all the terms needed to solve for portfolio variance.

Portfolio variance = w2A2(RA) + w2B2(RB) + 2*(wA)*(wB)*Cov(RA, RB) =(0.5)2*(350) + (0.5)2*(150) + 2*(0.5)*(0.5)*(80) = 87.5 + 37.5 + 40 = 165.

Standard Deviation (σ), as was defined earlier when we discuss statistics, is the positive square root of the variance. In our example, σ = (0.96)1/2, or $0.978 million.

Standard deviation is found by taking the square root of variance:

(165)1/2 = 12.85%.

A two-asset portfolio was used to illustrate this principle; most portfolios contain far more than two assets, and the formula for variance becomes more complicated for multi-asset portfolios (all terms in a covariance matrix need to be added to the calculation).

Joint Probability Functions and Covariance
Let's now apply the joint probability function to calculating covariance:

Example: Covariance from a Joint Probability Function
To illustrate this calculation, let's take an example where we have estimated the year-over-year sales growth for GM and Ford in three industry environments: strong (30% probability), average (40%) and weak (30%). Our estimates are indicated in the following joint-probability function:

  F Sales +6% F Sales +3% F Sales -1%
GM Sales +10% Strong (0.3) - -
GM Sales + 4% - Avg. (0.4) -
GM Sales -4% - - Weak (0.3)

To calculate covariance, we start by finding the probability-weighted sales estimate (expected value):

GM = (0.3)*(10) + (0.4)*(4) + (.03)*( -4) = 3 + 1.6 - 1.2 = 3.4%

Ford = (0.3)*(6) + (0.4)*(3) + (0.3)*( -1) = 1.8 + 1.2 - 0.3 = 2.7%

In the following table, we compute covariance by taking the deviations from each expected value in each market environment, multiplying the deviations together (the cross products) and then weighting the cross products by the probability

Environment GM deviation F deviation Cross-products Prob. Prob-wtd.
Strong 10 - 3.4 = 6.6 6 - 2.7 = 3.3 6.6*3.3 = 21.78 0.3 6.534
Average 4 - 3.4 = 0.6 3 - 2.7 = 0.3 0.6*0.3 = 0.18 0.4 0.072
Weak -4 - 3.4 = -7.4 -1 - 2.7 = -3.7 -7.4*-3.7 = 27.38 0.3 8.214

The last column (prob-wtd.) was found by multiplying the cross product (column 4) by the probability of that scenario (column 5).

The covariance is found by adding the values in the last column: 6.534+0.072+8.214 = 14.82.

Bayes' Formula
We all know intuitively of the principle that we learn from experience. For an analyst, learning from experience takes the form of adjusting expectations (and probability estimates) based on new information. Bayes' formula essentially takes this principle and applies it to the probability concepts we have already learned, by showing how to calculate an updated probability, the new probability given this new information. Bayes' formula is the updated probability, given new information:

Bayes' Formula:

Conditional probability of new info. given the event * (Prior probability of the event)
Unconditional Probability of New Info

Formula 2.26
P(E | I) = P(I | E) / P(I) * P(E)
Where: E = event, I = new info

The Multiplication Rule of Counting
The multiplication rule of counting states that if the specified number of tasks is given by k and n1, n2, n3, ... nk are variables used for the number of ways each of these tasks can be done, then the total number of ways to perform k tasks is found by multiplying all of the n1, n2, n3, ... nk variables together.

Take a process with four steps:

Step Number of ways
this step can be done
1 6
2 3
3 1
4 5

This process can be done a total of 90 ways. (6)*(3)*(1)*(5) = 90.

Factorial Notation
n! = n*(n - 1)*(n - 2) ... *1. In other words, 5!, or 5 factorial is equal to (5)*(4)*(3)*(2)*(1) = 120. In counting problems, it is used when there is a given group of size n, and the exercise is to assign the group to n slots; then the number of ways these assignments could be made is given by n!. If we were managing five employees and had five job functions, the number of possible combinations is 5! = 120.

Combination Notation
Combination notation refers to the number of ways that we can choose r objects from a total of n objects, when the order in which the r objects is listed does not matter.

In shorthand notation:

Formula 2.27

nCr = n = n!
r (n - r)!*r!

Thus if we had our five employees and we needed to choose three of them to team up on a new project, where they will be equal members (i.e. the order in which we choose them isn't important), formula tells us that there are 5!/(5 - 3)!3! = 120/(2)*(6) = 120/12, or 10 possible combinations.

Permutation notation
Permutation notation takes the same case (choosing r objects from a group of n) but assumes that the order that "r" is listed matters. It is given by this notation:

Formula 2.28
nPr = n!/(n - r)!

Returning to our example, if we not only wanted to choose three employees for our project, but wanted to establish a hierarchy (leader, second-in-command, subordinate), by using the permutation formula, we would have 5!/(5 - 3)! = 120/2 = 60 possible ways.

Now, let's consider how to calculate problems asking the number of ways to choose robjects from a total of nobjects when the order in which the robjects are listed matters, and when the order does not matter.

  • The combination formula is used if the order of r does not matter. For choosing three objects from a total of five objects, we found 5!/(5 - 3)!*3!, or 10 ways.
  • The permutation formula is used if the order of r does matter. For choosing three objects from a total of five objects, we found 5!/(5 - 3)!, or 60 ways.
Method When appropriate?
Factorial Assigning a group of size n to n slots
Combination Choosing r objects (in any order) from group of n
Permutation Choosing r objects (in particular order) from group of n
Common Probability Distributions
Related Articles
  1. Financial Advisors

    Tips on Passing the CFA Level I on Your First Attempt

    Obtain valuable tips and helpful study instructions that can help you pass the Level 1 Chartered Financial Analyst exam on your first attempt.
  2. Financial Advisors

    Putting Your CFA Level I on Your Resume

    Learn techniques for emphasizing your CFA Level I status in the Skills and Certifications or Professional Development section of your resume.
  3. Professionals

    Investment Analyst: Career Path and Qualifications

    Learn how to prepare for a career as an investment analyst, and read more about how many professionals in the field progress during their careers.
  4. Professionals

    CAIA Vs. CFA: How Are They Different?

    Find out how the CAIA and CFA designations differ, including which professionals should seek either title based on their career ambitions.
  5. Professionals

    Equity Investments: CFA Level II Tutorial

    Chapter 1: Equity Valuation: Its Applications and Processes Chapter 2: Return Concepts for Equity Valuation Chapter 3: Industry Analysis With Porter's 5 Forces
  6. Professionals

    What To Expect On The CFA Level III Exam

    The Chartered Financial Analyst Level III exam, which is only offered in June, is the last in the series of three tests that CFA candidates must pass.
  7. Professionals

    What To Expect On The CFA Level I Exam

    Becoming a chartered financial analyst requires the passing of three grueling exams covering an array of topics.
  8. Options & Futures

    The Alphabet Soup of Financial Certifications

    We decode the meaning of the many letters that can follow the names of financial professionals.
  9. Professionals

    How to Ace the CFA Level I Exam

    Prepare to ace the CFA Level 1 exam by studying systematically.
  10. Personal Finance

    How To Choose A Financial Advisor

    Many advisors display similar skillsets that can make distinguishing between them difficult. The following guidelines can help you better understand their qualifications and services.
  1. Personal Financial Advisor

    Professionals who help individuals manage their finances by providing ...
  2. CFA Institute

    Formerly known as the Association for Investment Management and ...
  3. Chartered Financial Analyst - CFA

    A professional designation given by the CFA Institute (formerly ...
  4. Security Analyst

    A financial professional who studies various industries and companies, ...
  1. What are the differences between a Chartered Financial Analyst (CFA) and a Certified ...

    The differences between a Chartered Financial Analyst (CFA) and a Certified Financial Planner (CFP) are many, but comes down ... Read Full Answer >>
  2. How do I become a Chartered Financial Analyst (CFA)?

    According to the CFA Institute, a person who holds a CFA charter is not a chartered financial analyst. The CFA Institute ... Read Full Answer >>
  3. What types of positions might a Chartered Financial Analyst (CFA) hold?

    The types of positions that a Chartered Financial Analyst (CFA) is likely to hold include any position that deals with large ... Read Full Answer >>
  4. Who benefits the most from prepaid expenses?

    Prepaid expenses benefit both businesses and individuals. Prepaid expenses are the types of expenses that are bought or paid ... Read Full Answer >>
  5. If I am looking to get an Investment Banking job. What education do employers prefer? ...

    If you are looking specifically for an investment banking position, an MBA may be marginally preferable over the CFA. The ... Read Full Answer >>
  6. Can I still pass the CFA Level I if I do poorly in the ethics section?

    You may still pass the Chartered Financial Analysis (CFA) Level I even if you fare poorly in the ethics section, but don't ... Read Full Answer >>
Hot Definitions
  1. Take A Bath

    A slang term referring to the situation of an investor who has experienced a large loss from an investment or speculative ...
  2. Black Friday

    1. A day of stock market catastrophe. Originally, September 24, 1869, was deemed Black Friday. The crash was sparked by gold ...
  3. Turkey

    Slang for an investment that yields disappointing results or turns out worse than expected. Failed business deals, securities ...
  4. Barefoot Pilgrim

    A slang term for an unsophisticated investor who loses all of his or her wealth by trading equities in the stock market. ...
  5. Quick Ratio

    The quick ratio is an indicator of a company’s short-term liquidity. The quick ratio measures a company’s ability to meet ...
  6. Black Tuesday

    October 29, 1929, when the DJIA fell 12% - one of the largest one-day drops in stock market history. More than 16 million ...
Trading Center