Quantitative Methods - Discrete and Continuous Compounding

In discrete compounded rates of return, time moves forward in increments, with each increment having a rate of return (ending price / beginning price) equal to 1. Of course, the more frequent the compounding, the higher the rate of return. Take a security that is expected to return 12% annually:

  • With annual holding periods, 12% compounded once = (1.12)1 - 1 = 12%.
  • With quarterly holding periods, 3% compounded 4 times = (1.03)4 - 1 = 12.55%
  • With monthly holding periods, 1% compounded 12 times = (1.01)12 - 1 = 12.68%
  • With daily holding periods, (12/365) compounded 365 times = 12.7475%
  • With hourly holding periods, (12/(365*24) compounded (365*24) times = 12.7496%

With greater frequency of compounding (i.e. as holding periods become smaller and smaller) the effective rate gradually increases but in smaller and smaller amounts. Extending this further, we can reduce holding periods so that they are sliced smaller and smaller so they approach zero, at which point we have the continuously compounded rate of return. Discrete compounding relates to measurable holding periods and a finite number of holding periods. Continuous compounding relates to holding periods so small they cannot be measured, with frequency of compounding so large it goes to infinity.

The continuous rate associated with a holding period is found by taking the natural log of 1 + holding-period return) Say the holding period is one year and holding-period return is 12%:

ln (1.12) = 11.33% (approx.)

In other words, if 11.33% were continuously compounded, its effective rate of return would be about 12%.

Earlier we found that 12% compounded hourly comes to about 12.7496%. In fact, e (the transcendental number) raised to the 0.12 power yields 12.7497% (approximately).

As we've stated previously, actual calculations of natural logs are not likely for answering a question as they give an unfair advantage to those with higher function calculators. At the same time, an exam problem can test knowledge of a relationship without requiring the calculation. For example, a question could ask:

Q. A portfolio returned 5% over one year, if continuously compounded, this is equivalent to ____?


A. ln 5
B. ln 1.05
C. e5
D. e1.05

The answer would be B based on the definition of continuous compounding. A financial function calculator or spreadsheet could yield the actual percentage of 4.879%, but wouldn't be necessary to answer the question correctly on the exam.

Monte Carlo Simulation
A Monte Carlo Simulation refers to a computer-generated series of trials where the probabilities for both risk and reward are tested repeatedly in an effort to help define these parameters. These simulations are characterized by large numbers of trials - typically hundreds or even thousands of iterations, which is why it's typically described as "computer generated". Also know that Monte Carlo simulations rely on random numbers to generate a series of samples.

Monte Carlo simulations are used in a number of applications, often as a complement to other risk-assessment techniques in an effort to further define potential risk. For example, a pension-benefit administrator in charge of managing assets and liabilities for a large plan may use computer software with Monte Carlo simulation to help understand any potential downside risk over time, and how changes in investment policy (e.g. higher or lower allocations to certain asset classes, or the introduction of a new manager) may affect the plan. While traditional analysis focuses on returns, variances and correlations between assets, a Monte Carlo simulation can help introduce other pertinent economic variables (e.g. interest rates, GDP growth and foreign exchange rates) into the simulation.

Monte Carlo simulations are also important in pricing derivative securities for which there are no existing analytical methods. European- and Asian-style options are priced with Monte Carlo methods, as are certain mortgage-backed securities for which the embedded options (e.g. prepayment assumptions) are very complex.

A general outline for developing a Monte Carlo simulation involves the following steps (please note that we are oversimplifying a process that is often highly technical):

  1. Identify all variables about which we are interested, the time horizon of the analysis and the distribution of all risk factors associated with each variable.
  2. Draw K random numbers using a spreadsheet generator. Each random variable would then be standardized so we have Z1, Z2, Z3... ZK.
  3. Simulate the possible values of the random variable by calculating its observed value with Z1, Z2, Z3... ZK.
  4. Following a large number of iterations, estimate each variable and quantity of interest to complete one trial. Go back and complete additional trials to develop more accurate estimates.

Historical Simulation
Historical simulation,
or back simulation, follows a similar process for large numbers of iterations, with historical simulation drawing from the previous record of that variable (e.g. past returns for a mutual fund). While both of these methods are very useful in developing a more meaningful and in-depth analysis of a complex system, it's important to recognize that they are basically statistical estimates; that is, they are not as analytical as (for example) the use of a correlation matrix to understand portfolio returns. Such simulations tend to work best when the input risk parameters are well defined.

Sampling and Estimation


Related Articles
  1. Fundamental Analysis

    What Can The Monte Carlo Simulation Do For Your Portfolio?

    A Monte Carlo simulation allows analysts and advisors to convert investment chances into choices. The advantage of Monte Carlo is its ability to factor in a range of values for various inputs.
  2. Fundamental Analysis

    Explaining the Monte Carlo Simulation

    Monte Carlo simulation is an analysis done by running a number of different variables through a model in order to determine the different outcomes.
  3. Options & Futures

    Multivariate Models: The Monte Carlo Analysis

    This decision-making tool integrates the idea that every decision has an impact on overall risk.
  4. Bonds & Fixed Income

    Accelerating Returns With Continuous Compounding

    Investopedia explains the natural log and exponential functions used to calculate this value.
  5. Professionals

    Straight-Line Returns Vs. Probability Analysis

    Straight-Line Returns Vs. Probability Analysis
  6. Fundamental Analysis

    Monte Carlo Simulation With GBM

    Learn to predict future events through a series of random trials.
  7. Fundamental Analysis

    Create a Monte Carlo Simulation Using Excel

    How to apply the Monte Carlo Simulation principles to a game of dice using Microsoft Excel.
  8. Investing Basics

    Learn Simple And Compound Interest

    Interest is defined as the cost of borrowing money, and depending on how it is calculated, can be classified as simple interest or compound interest.
  9. Fundamental Analysis

    Guide To Excel For Finance: Advanced Calculations

    Monte Carlo SimulationIn its most basic form, the Monte Carlo simulation seeks to simulate real-world outcomes by showing a range of outcomes for a given variable set. For example, in the casino ...
  10. Active Trading Fundamentals

    How To Convert Value At Risk To Different Time Periods

    Volatility is not the only way to measure risk. Learn about the "new science of risk management".
RELATED TERMS
  1. Monte Carlo Simulation

    Monte Carlo simulations are used to model the probability of ...
  2. Discrete Compounding

    Discrete compounding refers to the method by which interest is ...
  3. Compound Interest

    Compound Interest is interest calculated on the initial principal ...
  4. Compound Return

    The rate of return, usually expressed as a percentage, that represents ...
  5. Periodic Interest Rate

    The interest rate charged on a loan or realized on an investment ...
  6. Exponential Growth

    A pattern of increasing prices that resembles the curve of an ...
RELATED FAQS
  1. What percentage of a diversified portfolio should be exposed to the insurance sector?

    Learn how it is critical to innovate and improve financial models and techniques used in quantitative analysis, and understand ... Read Answer >>
  2. What is the minimum number of simulations that should be run in Monte Carlo Value ...

    Find out how many simulations should be run at minimum for an accurate value at risk when using the Monte Carlo method of ... Read Answer >>
  3. What formula can I use to calculate interest on interest?

    Find out more about compounding interest, what it measures and how to calculate the amount of compound interest accrued using ... Read Answer >>
  4. What is the difference between continuous compounding and discrete compounding?

    Learn to differentiate between and calculate the continuous and discrete compounding formulas for interest-generating investments ... Read Answer >>
  5. How do I use the rule of 72 to calculate continuous compounding?

    Find out why the rule of 72 does not accurately reflect the growth caused by continuous compounding, and which number can ... Read Answer >>
  6. How often is interest compounded?

    Understand what compound interest is and how the compounding of interest applies to the benefit of investors or creditors, ... Read Answer >>
Hot Definitions
  1. Law Of Demand

    A microeconomic law that states that, all other factors being equal, as the price of a good or service increases, consumer ...
  2. Cost Of Debt

    The effective rate that a company pays on its current debt. This can be measured in either before- or after-tax returns; ...
  3. Yield Curve

    A line that plots the interest rates, at a set point in time, of bonds having equal credit quality, but differing maturity ...
  4. Stop-Limit Order

    An order placed with a broker that combines the features of stop order with those of a limit order. A stop-limit order will ...
  5. Keynesian Economics

    An economic theory of total spending in the economy and its effects on output and inflation. Keynesian economics was developed ...
  6. Society for Worldwide Interbank Financial Telecommunications ...

    A member-owned cooperative that provides safe and secure financial transactions for its members. Established in 1973, the ...
Trading Center