Quantitative Methods  Discrete and Continuous Compounding
In discrete compounded rates of return, time moves forward in increments, with each increment having a rate of return (ending price / beginning price) equal to 1. Of course, the more frequent the compounding, the higher the rate of return. Take a security that is expected to return 12% annually:
 With annual holding periods, 12% compounded once = (1.12)^{1}  1 = 12%.
 With quarterly holding periods, 3% compounded 4 times = (1.03)^{4}  1 = 12.55%
 With monthly holding periods, 1% compounded 12 times = (1.01)^{12}  1 = 12.68%
 With daily holding periods, (12/365) compounded 365 times = 12.7475%
 With hourly holding periods, (12/(365*24) compounded (365*24) times = 12.7496%
With greater frequency of compounding (i.e. as holding periods become smaller and smaller) the effective rate gradually increases but in smaller and smaller amounts. Extending this further, we can reduce holding periods so that they are sliced smaller and smaller so they approach zero, at which point we have the continuously compounded rate of return. Discrete compounding relates to measurable holding periods and a finite number of holding periods. Continuous compounding relates to holding periods so small they cannot be measured, with frequency of compounding so large it goes to infinity.
The continuous rate associated with a holding period is found by taking the natural log of 1 + holdingperiod return) Say the holding period is one year and holdingperiod return is 12%:
ln (1.12) = 11.33% (approx.)
In other words, if 11.33% were continuously compounded, its effective rate of return would be about 12%.
Earlier we found that 12% compounded hourly comes to about 12.7496%. In fact, e (the transcendental number) raised to the 0.12 power yields 12.7497% (approximately).
As we've stated previously, actual calculations of natural logs are not likely for answering a question as they give an unfair advantage to those with higher function calculators. At the same time, an exam problem can test knowledge of a relationship without requiring the calculation. For example, a question could ask:
Q. A portfolio returned 5% over one year, if continuously compounded, this is equivalent to ____?
A. ln 5
B. ln 1.05
C. e^{5}
D. e^{1.05}
The answer would be B based on the definition of continuous compounding. A financial function calculator or spreadsheet could yield the actual percentage of 4.879%, but wouldn't be necessary to answer the question correctly on the exam.
A Monte Carlo Simulation refers to a computergenerated series of trials where the probabilities for both risk and reward are tested repeatedly in an effort to help define these parameters. These simulations are characterized by large numbers of trials  typically hundreds or even thousands of iterations, which is why it's typically described as "computer generated". Also know that
A general outline for developing a
 Identify all variables about which we are interested, the time horizon of the analysis and the distribution of all risk factors associated with each variable.
 Draw K random numbers using a spreadsheet generator. Each random variable would then be standardized so we have Z_{1}, Z_{2}, Z_{3}... Z_{K}.
 Simulate the possible values of the random variable by calculating its observed value with Z_{1}, Z_{2}, Z_{3}... Z_{K}.
 Following a large number of iterations, estimate each variable and quantity of interest to complete one trial. Go back and complete additional trials to develop more accurate estimates.
Historical Simulation
Historical simulation, or back simulation, follows a similar process for large numbers of iterations, with historical simulation drawing from the previous record of that variable (e.g. past returns for a mutual fund). While both of these methods are very useful in developing a more meaningful and indepth analysis of a complex system, it's important to recognize that they are basically statistical estimates; that is, they are not as analytical as (for example) the use of a correlation matrix to understand portfolio returns. Such simulations tend to work best when the input risk parameters are well defined.

Fundamental Analysis
What Can The Monte Carlo Simulation Do For Your Portfolio?
A Monte Carlo simulation allows analysts and advisors to convert investment chances into choices. The advantage of Monte Carlo is its ability to factor in a range of values for various inputs. 
Fundamental Analysis
Explaining the Monte Carlo Simulation
Monte Carlo simulation is an analysis done by running a number of different variables through a model in order to determine the different outcomes. 
Options & Futures
Multivariate Models: The Monte Carlo Analysis
This decisionmaking tool integrates the idea that every decision has an impact on overall risk. 
Bonds & Fixed Income
Accelerating Returns With Continuous Compounding
Investopedia explains the natural log and exponential functions used to calculate this value. 
Professionals
StraightLine Returns Vs. Probability Analysis
StraightLine Returns Vs. Probability Analysis 
Fundamental Analysis
Monte Carlo Simulation With GBM
Learn to predict future events through a series of random trials. 
Fundamental Analysis
Create a Monte Carlo Simulation Using Excel
How to apply the Monte Carlo Simulation principles to a game of dice using Microsoft Excel. 
Investing Basics
Learn Simple And Compound Interest
Interest is defined as the cost of borrowing money, and depending on how it is calculated, can be classified as simple interest or compound interest. 
Fundamental Analysis
Guide To Excel For Finance: Advanced Calculations
Monte Carlo SimulationIn its most basic form, the Monte Carlo simulation seeks to simulate realworld outcomes by showing a range of outcomes for a given variable set. For example, in the casino ... 
Active Trading Fundamentals
How To Convert Value At Risk To Different Time Periods
Volatility is not the only way to measure risk. Learn about the "new science of risk management".

Monte Carlo Simulation
Monte Carlo simulations are used to model the probability of ... 
Discrete Compounding
Discrete compounding refers to the method by which interest is ... 
Compound Interest
Compound Interest is interest calculated on the initial principal ... 
Compound Return
The rate of return, usually expressed as a percentage, that represents ... 
Periodic Interest Rate
The interest rate charged on a loan or realized on an investment ... 
Exponential Growth
A pattern of increasing prices that resembles the curve of an ...

What percentage of a diversified portfolio should be exposed to the insurance sector?
Learn how it is critical to innovate and improve financial models and techniques used in quantitative analysis, and understand ... Read Answer >> 
What is the minimum number of simulations that should be run in Monte Carlo Value ...
Find out how many simulations should be run at minimum for an accurate value at risk when using the Monte Carlo method of ... Read Answer >> 
What formula can I use to calculate interest on interest?
Find out more about compounding interest, what it measures and how to calculate the amount of compound interest accrued using ... Read Answer >> 
What is the difference between continuous compounding and discrete compounding?
Learn to differentiate between and calculate the continuous and discrete compounding formulas for interestgenerating investments ... Read Answer >> 
How do I use the rule of 72 to calculate continuous compounding?
Find out why the rule of 72 does not accurately reflect the growth caused by continuous compounding, and which number can ... Read Answer >> 
How often is interest compounded?
Understand what compound interest is and how the compounding of interest applies to the benefit of investors or creditors, ... Read Answer >>