1. Options Pricing: Introduction
  2. Options Pricing: A Review Of Basic Terms
  3. Options Pricing: The Basics Of Pricing
  4. Options Pricing: Intrinsic Value And Time Value
  5. Options Pricing: Factors That Influence Option Price
  6. Options Pricing: Distinguishing Between Option Premiums And Theoretical Value
  7. Options Pricing: Modeling
  8. Options Pricing: Black-Scholes Model
  9. Options Pricing: Cox-Rubinstein Binomial Option Pricing Model
  10. Options Pricing: Put/Call Parity
  11. Options Pricing: Profit And Loss Diagrams
  12. Options Pricing: The Greeks
  13. Options Pricing: Conclusion

The Black-Scholes formula (also called Black-Scholes-Merton) was the first widely used model for option pricing. It's used to calculate the theoretical value of European-style options using current stock prices, expected dividends, the option's strike price, expected interest rates, time to expiration and expected volatility. The formula, developed by three economists – Fischer Black, Myron Scholes and Robert Merton – is perhaps the world's most well-known options pricing model, and was introduced in their 1973 paper, "The Pricing of Options and Corporate Liabilities" published in the Journal of Political Economy. Black passed away two years before Scholes and Merton were awarded the 1997 Nobel Prize in Economics for their work in finding a new method to determine the value of derivatives (the Nobel Prize is not given posthumously; however, the Nobel committee acknowledged Black's role in the Black-Scholes model).

The Black-Scholes model makes certain assumptions:

  • The option is European and can only be exercised at expiration
  • No dividends are paid out during the life of the option
  • Efficient markets (i.e., market movements cannot be predicted)
  • There are no transaction costs in buying the option
  • The risk-free rate and volatility of the underlying are known and constant
  • That the returns on the underlying are normally distributed

Note: While the original Black-Scholes model didn't consider the effects of dividends paid during the life of the option, the model is frequently adapted to account for dividends by determining the ex-dividend date value of the underlying stock.

Compare how different online brokers display an Option Chain in our Brokerage Review Center.

Black-Scholes Formula

The formula, shown in Figure 4, takes the following variables into consideration:

  • Current underlying price
  • Options strike price
  • Time until expiration, expressed as a percent of a year
  • Implied volatility
  • Risk-free interest rates
Figure 4: The Black-Scholes pricing formula for call options.

The model is essentially divided into two parts: the first part, SN(d1), multiplies the price by the change in the call premium in relation to a change in the underlying price. This part of the formula shows the expected benefit of purchasing the underlying outright. The second part, N(d2)Ke-rt, provides the current value of paying the exercise price upon expiration (remember, the Black-Scholes model applies to European options that can be exercised only on expiration day). The value of the option is calculated by taking the difference between the two parts, as shown in the equation.

The mathematics involved in the formula is complicated and can be intimidating. Fortunately, you don't need to know or even understand the math to use Black-Scholes modeling in your own strategies. As mentioned previously, options traders have access to a variety of online options calculators, and many of today's trading platforms boast robust options analysis tools, including indicators and spreadsheets that perform the calculations and output the option pricing values. An example of an online Black-Scholes calculator is shown in Figure 5; the user inputs all five variables (strike price, stock price, time (days), volatility and risk free interest rate) and clicks "Get quote" to display results.

Black-Scholes option calculator
Figure 5: An online Black-Scholes calculator can be used to get values for both calls and puts. Users enter the required fields and the calculator does the rest. Calculator courtesy www.tradingtoday.com

Options Pricing: Cox-Rubinstein Binomial Option Pricing Model
Related Articles
  1. Investing

    Understanding the Black-Scholes Model

    The Black-Scholes model is a mathematical model of a financial market. From it, the Black-Scholes formula was derived. The introduction of the formula in 1973 by three economists led to rapid ...
  2. Trading

    NYIF Instructor Series: Black Scholes Model

    In this short instructional video Anton Theunissen explains the Black Scholes model.
  3. Investing

    The Volatility Surface Explained

    Learn about stock options and the "volatility surface," and discover why it is an important concept in stock options pricing and trading.
  4. Trading

    How To Build Valuation Models Like Black-Scholes (BS)?

    Want to build a model like Black-Scholes? Here are the tips and guidelines for developing a framework with the example of the Black-Scholes model.
  5. Trading

    Understanding How Dividends Affect Option Prices

    Learn how the distribution of dividends on stocks impacts the price of call and put options, and understand how the ex-dividend date affects options.
  6. Trading

    The Anatomy of Options

    Find out how you can use the "Greeks" to guide your options trading strategy and help balance your portfolio.
  7. Trading

    Dividends, Interest Rates And Their Effect On Stock Options

    Learn how analyzing these variables are crucial to knowing when to exercise early.
Frequently Asked Questions
  1. How do you calculate r-squared in Excel?

    Calculate R-squared in Microsoft Excel by creating two data ranges to correlate. Use the Correlation formula to correlate ...
  2. What is the Difference Between International Monetary Fund and the World Bank?

    Learn about the International Monetary Fund and the World Bank and how they are differentiated by their respective functions ...
  3. Where Did the Bull and Bear Market Get Their Names?

    The terms bull and bear are used to describe general actions and attitudes, or sentiment, either of an individual (bear and ...
  4. What's the difference between Google's GOOG and GOOGL stock tickers?

    Learn the difference between Google's GOOG and GOOGL ticker symbols. Splitting shares into classes prevents management from ...
Trading Center