The Black-Scholes formula (also called Black-Scholes-Merton) was the first widely used model for option pricing. It's used to calculate the theoretical value of European-style options using current stock prices, expected dividends, the option's strike price, expected interest rates, time to expiration and expected volatility. The formula, developed by three economists – Fischer Black, Myron Scholes and Robert Merton – is perhaps the world's most well-known options pricing model, and was introduced in their 1973 paper, "The Pricing of Options and Corporate Liabilities" published in the Journal of Political Economy. Black passed away two years before Scholes and Merton were awarded the 1997 Nobel Prize in Economics for their work in finding a new method to determine the value of derivatives (the Nobel Prize is not given posthumously; however, the Nobel committee acknowledged Black's role in the Black-Scholes model).

The Black-Scholes model makes certain assumptions:

• The option is European and can only be exercised at expiration
• No dividends are paid out during the life of the option
• Efficient markets (i.e., market movements cannot be predicted)
• There are no transaction costs in buying the option
• The risk-free rate and volatility of the underlying are known and constant
• That the returns on the underlying are normally distributed

Note: While the original Black-Scholes model didn't consider the effects of dividends paid during the life of the option, the model is frequently adapted to account for dividends by determining the ex-dividend date value of the underlying stock.

## Black-Scholes Formula

The formula, shown in Figure 4, takes the following variables into consideration:

• Current underlying price
• Options strike price
• Time until expiration, expressed as a percent of a year
• Implied volatility
• Risk-free interest rates
 Figure 4: The Black-Scholes pricing formula for call options.

The model is essentially divided into two parts: the first part, SN(d1), multiplies the price by the change in the call premium in relation to a change in the underlying price. This part of the formula shows the expected benefit of purchasing the underlying outright. The second part, N(d2)Ke-rt, provides the current value of paying the exercise price upon expiration (remember, the Black-Scholes model applies to European options that can be exercised only on expiration day). The value of the option is calculated by taking the difference between the two parts, as shown in the equation.

The mathematics involved in the formula is complicated and can be intimidating. Fortunately, you don't need to know or even understand the math to use Black-Scholes modeling in your own strategies. As mentioned previously, options traders have access to a variety of online options calculators, and many of today's trading platforms boast robust options analysis tools, including indicators and spreadsheets that perform the calculations and output the option pricing values. An example of an online Black-Scholes calculator is shown in Figure 5; the user inputs all five variables (strike price, stock price, time (days), volatility and risk free interest rate) and clicks "Get quote" to display results.

 Figure 5: An online Black-Scholes calculator can be used to get values for both calls and puts. Users enter the required fields and the calculator does the rest. Calculator courtesy www.tradingtoday.com

Options Pricing: Cox-Rubinstein Binomial Option Pricing Model
Related Articles
1. Investing

### The Volatility Surface Explained

Learn about stock options and the "volatility surface," and discover why it is an important concept in stock options pricing and trading.

### Circumvent Limitations of Black-Scholes Model

Mathematical or quantitative model-based trading continues to gain momentum, despite major failures like the financial crisis of 2008-09, which was attributed to the flawed use of trading models. ...

### The Anatomy of Options

Find out how you can use the "Greeks" to guide your options trading strategy and help balance your portfolio.

### How & Why Interest Rates Affect Options

The Fed is expected to change interest rates soon. We explain how a change in interest rates impacts option valuations.

### Breaking Down The Binomial Model To Value An Option

Find out how to carve your way into this valuation model niche.

### Understanding Option Pricing

Take advantage of stock movements by getting to know these derivatives.

### Sensitivity Analysis For Black-Scholes Pricing Model

Trading options requires complex calculations, based on multiple parameters. Which factors impact option prices the most?

### The "True" Cost Of Stock Options

Perhaps the real cost of employee stock options is already accounted for in the expense of buyback programs.