1. Options Pricing: Introduction
  2. Options Pricing: A Review Of Basic Terms
  3. Options Pricing: The Basics Of Pricing
  4. Options Pricing: Intrinsic Value And Time Value
  5. Options Pricing: Factors That Influence Option Price
  6. Options Pricing: Distinguishing Between Option Premiums And Theoretical Value
  7. Options Pricing: Modeling
  8. Options Pricing: Black-Scholes Model
  9. Options Pricing: Cox-Rubenstein Binomial Option Pricing Model
  10. Options Pricing: Put/Call Parity
  11. Options Pricing: Profit And Loss Diagrams
  12. Options Pricing: The Greeks
  13. Options Pricing: Conclusion

The Cox-Rubenstein (or Cox-Ross-Rubenstein) binomial option pricing model is a variation of the original Black-Scholes option pricing model. It was first proposed in 1979 by financial economists/engineers John Carrington Cox, Stephen Ross and Mark Edward Rubenstein. The model is popular because it considers the underlying instrument over a period of time, instead of just at one point in time, by using a lattice based model.

A lattice model takes into account expected changes in various parameters over an option's life, thereby producing a more accurate estimate of option prices than created by models that consider only one point in time. Because of this, the Cox-Ross-Rubenstein model is especially useful for analyzing American style options, which can be exercised at any time up to expiration (European style options can only be exercised upon expiration).

The Cox-Ross-Rubenstein model uses a risk-neutral valuation method. Its underlying principal purports that when determining option prices, it can be assumed that the world is risk neutral and that all individuals (and investors) are indifferent to risk. In a risk neutral environment, expected returns are equal to the risk-free rate of interest.

The Cox-Ross-Rubenstein model makes certain assumptions, including:

  • No possibility of arbitrage; a perfectly efficient market
  • At each time node, the underlying price can only take an up or a down move and never both simultaneously
The Cox-Ross-Rubenstein model employs and iterative structure that allows for the specification of nodes (points in time) between the current date and the option's expiration date. The model is able to provide a mathematical valuation of the option at each specified time, thereby creating a "binomial tree" - a graphical representation of possible values at different nodes.

The Cox-Ross-Rubenstein model is a two-state (or two-step) model in that it assumes the underlying price can only either increase (up) or decrease (down) with time until expiration. Valuation begins at each of the final nodes (at expiration) and iterations are performed backwards through the binomial tree up to the first node (date of valuation). In very basic terms, the model involves three steps:

  1. The creation of the binomial price tree
  2. Option value calculated at each final node
  3. Option value calculated at each preceding node
While the math behind the Cox-Ross-Rubenstein model is considered less complicated than the Black-Scholes model (but still outside the scope of this tutorial), traders can again make use of online calculators and trading platform-based analysis tools to determine option pricing values. Figure 6 shows an example of the Cox-Ross-Rubenstein model applied to an American-style options contract. The calculator produces both put and call values based on variables input by the user.

Cox-Ross-Rubenstein model applied to an American-style options contract.
Figure 6: The Cox-Ross-Rubenstein model applied to an American-style options contract, using the Options Industry Council\'s online pricing calculator.


Options Pricing: Put/Call Parity

Related Articles
  1. Trading

    Breaking Down The Binomial Model To Value An Option

    Find out how to carve your way into this valuation model niche.
  2. Investing

    Using Decision Trees In Finance

    These decision-making tools play an integral role in corporate finance and economic forecasting.
  3. Trading

    The Anatomy of Options

    Find out how you can use the "Greeks" to guide your options trading strategy and help balance your portfolio.
  4. Investing

    Examples To Understand The Binomial Option Pricing Model

    Binomial option pricing model, based on risk neutral valuation, offers a unique alternative to Black-Scholes. Here are detailed examples with calculations using Binomial model and explanation ...
  5. Trading

    How To Build Valuation Models Like Black-Scholes (BS)?

    Want to build a model like Black-Scholes? Here are the tips and guidelines for developing a framework with the example of the Black-Scholes model.
  6. Investing

    Understanding the Black-Scholes Model

    The Black-Scholes model is a mathematical model of a financial market. From it, the Black-Scholes formula was derived. The introduction of the formula in 1973 by three economists led to rapid ...
  7. Trading

    Exploring European Options

    The ability to exercise only on the expiration date is what sets these options apart.
  8. Trading

    Options Pricing

    Options are valued in a variety of different ways. Learn about how options are priced with this tutorial.
Frequently Asked Questions
  1. Depreciation Can Shield Taxes, Bolster Cash Flow

    Depreciation can be used as a tax-deductible expense to reduce tax costs, bolstering cash flow
  2. What schools did Warren Buffett attend on his way to getting his science and economics degrees?

    Learn how Warren Buffett became so successful through his attendance at multiple prestigious schools and his real-world experiences.
  3. How many attempts at each CFA exam is a candidate permitted?

    The CFA Institute allows an individual an unlimited amount of attempts at each examination.Although you can attempt the examination ...
  4. What's the average salary of a market research analyst?

    Learn about average stock market analyst salaries in the U.S. and different factors that affect salaries and overall levels ...
Trading Center