Complete Guide To Corporate Finance


Bonds - Bond Valuation

The fundamental principle of bond valuation is that the bond's value is equal to the present value of its expected (future) cash flows. The valuation process involves the following three steps:

1. Estimate the expected cash flows.
2. Determine the appropriate interest rate or interest rates that should be used to discount the cash flows.
3. Calculate the present value of the expected cash flows found in step one by using the interest rate or interest rates determined in step two.

Determining Appropriate Interest Rates
The minimum interest rate that an investor should accept is the yield for a risk-free bond (a Treasury bond for a U.S. investor). The Treasury security that is most often used is the on-the-run issue because it reflects the latest yields and is the most liquid.

For non-Treasury bonds, such as corporate bonds, the rate or yield that would be required would be the on-the-run government security rate plus a premium that accounts for the additional risks that come with non-Treasury bonds.

As for the maturity, an investor could just use the final maturity date of the issue compared to the Treasury security. However, because each cash flow is unique in its timing, it would be better to use the maturity that matches each of the individual cash flows.

Computing a Bond's Value
First, we need to find the present value (PV) of the bond's future cash flows. The present value is the amount that would have to be invested today to generate that future cash flow. PV is dependent on the timing of the cash flow and the interest rate used to calculate the present value. To figure out the value, the PV of each individual cash flow must be found. Then, just add the figures together to determine the bond's price.

PV at time T = expected cash flows in period T / (1 + I) to the T power

After you calculate the expected cash flows, you will need to add the individual cash flows:

Value = present value @ T1 + present value @ T2 + present value @Tn

Let's throw some numbers around to further illustrate this concept.

Example: The Value of a Bond
Bond GHJ matures in five years with a coupon rate of 7% and a maturity value of $1,000. For simplicity's sake, let's assume that the bond pays annually and the discount rate is 5%.

The cash flow for each of the years is as follows:
Year One = $70

Year Two = $70

Year Three = $70

Year Four = $70

Year Five = $1,070

Thus, the PV of the cash flows is as follows:

Year One = $70 / (1.05) to the 1st power = $66.67
Year Two = $70 / (1.05) to the 2nd power = $ 63.49
Year Three = $70 / (1.05) to the 3rd power = $ 60.47
Year Four = $70 / (1.05) to the 4th power = $ 57.59
Year Five = $1,070 / (1.05) to the 5th power = $ 838.37

Now to find the value of the bond:
Value = $66.67 + $63.49 + $60.47 + $57.59 + $838.37
Value = $1,086.59

How Does the Value of a Bond Change?

As rates increase or decrease, the discount rate that is used also changes. Let's change the discount rate in the above example to 10% to see how it affects the bond's value.

Example: The Value of a Bond when Discount Rates Change
PV of the cash flows is:
Year One = $70 / (1.10) to the 1st power = $ 63.63
Year Two = $70 / (1.10) to the 2nd power = $ 57.85
Year Three = $70 / (1.10) to the 3rd power = $ 52.63
Year Four = $70 / (1.10) to the 4th power = $ 47.81
Year Five = $1,070 / (1.10) to the 5th power = $ 664.60

Value = 63.63 + 57.85 + 52.63 + 47.81 + 664.60 = $ 886.52

  • As we can see from the above examples, an important property of PV is that for a given discount rate, the older a cash flow value is, the lower its present value.
  • We can also compute the change in value from an increase in the discount rate used in our example. The change = $1,086.59 - $886.52 = $200.07.
  • Another property of PV is that the higher the discount rate, the lower the value of a bond; the lower the discount rate, the higher the value of the bond.
Look Out!

If the discount rate is higher than the coupon rate the PV will be less than par. If the discount rate is lower than the coupon rate, the PV will be higher than par value.

How Does a Bond's Price Change as it Approaches its Maturity Date?
As a bond moves closer to its maturity date, its price will move closer to par. There are three possible scenarios:

1.If a bond is at a premium, the price will decline over time toward its par value.
2. If a bond is at a discount, the price will increase over time toward its par value.
3. If a bond is at par, its price will remain the same.

To show how this works, let's use our original example of the 7% bond, but now let's assume that a year has passed and the discount rate remains the same at 5%.

Example: Price Changes Over Time
Let's compute the new value to see how the price moves closer to par. You should also be able to see how the amount by which the bond price changes is attributed to it being closer to its maturity date.

PV of the cash flows is:
Year One = $70 / (1.05) to the 1st power = $66.67
Year Two = $70 / (1.05) to the 2nd power = $ 63.49
Year Three = $70 / (1.05) to the 3rd power = $ 60.47
Year Four = $1,070 / (1.05) to the 4th power = $880.29

Value = $66.67 + $63.49 + $60.47 + $880.29 = $1,070.92

As the price of the bond decreases, it moves closer to its par value. The amount of change attributed to the year's difference is $15.67.

An individual can also decompose the change that results when a bond approaches its maturity date and the discount rate changes. This is accomplished by first taking the net change in the price that reflects the change in maturity, then adding it to the change in the discount rate. The two figures should equal the overall change in the bond's price.

Computing the Value of a Zero-coupon Bond
A zero-coupon bond may be the easiest of securities to value because there is only one cash flow - the maturity value.

The formula to calculate the value of a zero coupon bond that matures N years from now is as follows:

Maturity value / (1 + I) to the power of the number of years * 2
Where I is the semi-annual discount rate.

Example: The Value of a Zero-Coupon Bond
For illustration purposes, let's look at a zero coupon with a maturity of three years and a maturity value of $1,000 discounted at 7%.

I = 0.035 (.07 / 2)
N = 3

Value of a Zero-Coupon Bond

= $1,000 / (1.035) to the 6th power (3*2)
= $1,000 / 1.229255
= $813.50

Arbitrage-free Valuation Approach
Under a traditional approach to valuing a bond, it is typical to view the security as a single package of cash flows, discounting the entire issue with one discount rate. Under the arbitrage-free valuation approach, the issue is instead viewed as various zero-coupon bonds that should be valued individually and added together to determine value. The reason this is the correct way to value a bond is that it does not allow a risk-free profit to be generated by "stripping" the security and selling the parts at a higher price than purchasing the security in the market.

As an example, a five-year bond that pays semi-annual interest would have 11 separate cash flows and would be valued using the appropriate yield on the curve that matches its maturity. So the markets implement this approach by determining the theoretical rate the U.S. Treasury would have to pay on a zero-coupon treasury for each maturity. The investor then determines the value of all the different payments using the theoretical rate and adds them together. This zero-coupon rate is the Treasury spot rate. The value of the bond based on the spot rates is the arbitrage-free value.

Determining Whether a Bond Is Under or Over Valued
What you need to be able to do is value a bond like we have done before using the more traditional method of applying one discount rate to the security. The twist here, however, is that instead of using one rate, you will use whatever rate the spot curve has that coordinates with the proper maturity. You will then add the values up as you did previously to get the value of the bond.

You will then be given a market price to compare to the value that you derived from your work. If the market price is above your figure, then the bond is undervalued and you should buy the issue. If the market price is below your price, then the bond is overvalued and you should sell the issue.

How Bond Coupon Rates and Market Rates Affect Bond Price
If a bond's coupon rate is above the yield required by the market, the bond will trade above its par value or at a premium. This will occur because investors will be willing to pay a higher price to achieve the additional yield. As investors continue to buy the bond, the yield will decrease until it reaches market equilibrium. Remember that as yields decrease, bond prices rise.

  • If a bond's coupon rate is below the yield required by the market, the bond will trade below its par value or at a discount. This happens because investors will not buy this bond at par when other issues are offering higher coupon rates, so yields will have to increase, which means the bond price will drop to induce investors to purchase these bonds. Remember that as yields increase, bond prices fall.
Bond Ratings
Related Articles
  1. Investing

    What a Family Tradition Taught Me About Investing

    We share some lessons from friends and family on saving money and planning for retirement.
  2. Investing

    Where the Price is Right for Dividends

    There are two broad schools of thought for equity income investing: The first pays the highest dividend yields and the second focuses on healthy yields.
  3. Professionals

    4 Must Watch Films and Documentaries for Accountants

    Learn how these must-watch movies for accountants teach about the importance of ethics in a world driven by greed and financial power.
  4. Personal Finance

    How Tech Can Help with 3 Behavioral Finance Biases

    Even if you’re a finance or statistics expert, you’re not immune to common decision-making mistakes that can negatively impact your finances.
  5. Investing Basics

    5 Tips For Diversifying Your Portfolio

    A diversified portfolio will protect you in a tough market. Get some solid tips here!
  6. Entrepreneurship

    Identifying And Managing Business Risks

    There are a lot of risks associated with running a business, but there are an equal number of ways to prepare for and manage them.
  7. Active Trading

    An Introduction To Depreciation

    Companies make choices and assumptions in calculating depreciation, and you need to know how these affect the bottom line.
  8. Forex Education

    Explaining Uncovered Interest Rate Parity

    Uncovered interest rate parity is when the difference in interest rates between two nations is equal to the expected change in exchange rates.
  9. Fundamental Analysis

    Using Decision Trees In Finance

    A decision tree provides a comprehensive framework to review the alternative scenarios and consequences a decision may lead to.
  10. Economics

    Understanding Tragedy of the Commons

    The tragedy of the commons describes an economic problem in which individuals try to reap the greatest benefits from a given resource.
  1. Accountant

    A professional who performs accounting functions such as audits ...
  2. Rule Of 72

    A shortcut to estimate the number of years required to double ...
  3. Laissez Faire

    An economic theory from the 18th century that is strongly opposed ...
  4. Personal Finance

    All financial decisions and activities of an individual or household, ...
  5. Audit

    An unbiased examination and evaluation of the financial statements ...
  6. Put-Call Parity

    A principle that defines the relationship between the price of ...
  1. What should I study in school to prepare for a career in corporate finance?

    Depending on which area you want to specialize in, corporate finance can be one of the most competitive fields in business. ... Read Full Answer >>
  2. Why would a company issue preference shares instead of common shares?

    Preference shares, or preferred stock, act as a hybrid between common shares and bond issues. As with any produced good or ... Read Full Answer >>
  3. What is the difference between cost of debt capital and cost of equity?

    In corporate finance, capital – the money a business uses to fund operations – comes from two sources: debt and equity. While ... Read Full Answer >>
  4. What is the difference between gross profit, operating profit and net income?

    The terms profit and income are often used interchangeably in day-to-day life. In corporate finance, however, these terms ... Read Full Answer >>
  5. What’s the difference between the two federal student loan programs (FFEL and Direct)?

    The short answer is that one loan program still exists (Federal Direct Loans) and one was ended by the Health Care and Education ... Read Full Answer >>
  6. Can working capital be depreciated?

    Working capital as current assets cannot be depreciated the way long-term, fixed assets are. In accounting, depreciation ... Read Full Answer >>

You May Also Like

Hot Definitions
  1. Take A Bath

    A slang term referring to the situation of an investor who has experienced a large loss from an investment or speculative ...
  2. Black Friday

    1. A day of stock market catastrophe. Originally, September 24, 1869, was deemed Black Friday. The crash was sparked by gold ...
  3. Turkey

    Slang for an investment that yields disappointing results or turns out worse than expected. Failed business deals, securities ...
  4. Barefoot Pilgrim

    A slang term for an unsophisticated investor who loses all of his or her wealth by trading equities in the stock market. ...
  5. Quick Ratio

    The quick ratio is an indicator of a company’s short-term liquidity. The quick ratio measures a company’s ability to meet ...
  6. Black Tuesday

    October 29, 1929, when the DJIA fell 12% - one of the largest one-day drops in stock market history. More than 16 million ...
Trading Center