Complete Guide To Corporate Finance

AAA

Project Analysis And Valuation - Scenario / What-If Analysis

Scenario analysis evaluates the expected value of a proposed investment or business activity. The statistical mean is the highest probability event expected in a certain situation. By creating various scenarios that may occur and combining them with the probability that they will occur, an analyst can better determine the value of an investment or business venture, and the probability that the expected value calculated will actually occur.

Determining the probability distribution of an investment is equal to determining the risk inherent in that investment. By comparing the expected return to the expected risk and overlaying that with an investor's risk tolerance, you may be able to make better decisions about whether to invest in a prospective business venture. This article will present some simple examples of various ways to conduct scenario analysis and provide rationale for their use. (To learn more about probability distributions, read Find The Right Fit With Probability Distributions.)

Overview
Historical performance data is required to provide some insight into the variability of an investment's performance and to help investors understand the risk that has been borne by shareholders in the past. By examining periodic return data, an investor can gain insight into an investment's past risk. For example, because variability equates to risk, an investment that provided the same return every year is deemed to be less risky than an investment that provided annual returns that fluctuated between negative and positive. Although both investments may provide the same overall return for a given investment horizon, the periodic returns demonstrate the risk differentials in these investments. (For more insight, read Measure Your Portfolio's Performance.)

Strict regulations over the calculation and presentation of past returns ensure the comparability of return information across securities, investment managers and funds. However, past performance does not provide any guarantee about an investment's future risk or return. Scenario analysis attempts to understand a venture's potential risk/return profile; by performing an analysis of multiple pro-forma estimates for a given venture and denoting a probability for each scenario, one begins to create a probability distribution (risk profile) for that particular business enterprise.

Examples
Scenario analysis can be applied in many ways. The typical method is to perform multi-factor analysis (models containing multiple variables) in the following ways:

  • Creating a Fixed Number of Scenarios
    • Determining the High/Low Spread
    • Creating Intermediate Scenarios


Many analysts will create a multivariate model (a model with multiple variables), plug in their best guess for the value of each variable and come up with one forecasted value. The mean of any probability distribution is the one that has the highest probability of occurrence. By using a value for each variable that is expected to be the most probable, the analyst is in fact calculating the mean value of the potential distribution of potential values. Although the mean has informational value, as previously stated, it does not show any potential variation in the outcomes.

Risk analysis is concerned with trying to determine the probability that a future outcome will be something other than the mean value. One way to show variation is to calculate an estimate of the extreme and the least probable outcomes on the positive and negative side of the mean. The simplest method to forecast potential outcomes of an investment or venture is to produce an upside and downside case for each outcome and then to speculate the probability that it will occur. The figure below uses a three scenario method evaluating a base case (B) (mean value), upside case (U) and a downside case (D).



For example a simple two factor analysis:
Value V= Variable A + Variable B, where each variable value is not constrained.

By assigning two extreme upside and downside values for A and B, we would then get our three scenario values. By assigning the probability of occurrence, let us assume:

50% for Value (B) = 200
25% for Value (U) = 300
25% for Value (D) =100

When assigning probabilities the sum of the probabilities assigned must equal 100%. By graphing these values and their probabilities we can infer a rather crude probability distribution - the distribution of all calculated values and the probability of those values occurring. By forming the upside and downside cases we begin to get an understanding of other possible return outcomes, but there are many other potential outcomes within the set bounded by the extreme upside and downside already estimated.

The figure below presents one method for determining the fixed number of outcomes between the two extremes. Assuming that each variable acts independently, that is, its value is not dependent on the value of any other variable, we can conduct an upside, base and downside case for each variable. In the simplistic two factor model, this type of analysis would result in a total of nine outcomes. A three-factor model using three potential outcomes for each variable would end up with 27 outcomes, and so forth. The equation for determining the total number of outcomes using this method is equal to (YX), where Y= the number of possible scenarios for each factor and X= the number of factors in the model. (For more, see Modern Portfolio Theory Stats Primer.)



In Figure 2, there are nine outcomes but not nine separate values. For example, the outcome for BB could be equal to the outcome DU or UD. To finalize this study, the analyst would assign the probabilities for each outcome and then add those probabilities for any like values. We would expect that the value corresponding to the mean, in this case being BB, would appear the most times since the mean is the value with the highest probability of occurring. The frequency of like values increases the probability of occurrence. The more times values do not repeat, especially the mean value, the higher the probability that future returns will be something other than the mean. The more factors one has in a model and the more factor scenarios one includes, the more potential scenario values are calculated resulting in a robust analysis and insight into the risk of a potential investment.

Drawbacks of Scenario Analysis
The major drawback for these types of fixed outcome analyses are the probabilities estimated and the outcome sets bounded by the values for the extreme positive and negative events. Although they may be low probability events, most investments, or portfolios of investments, have the potential for very high positive and negative returns. Investors must remember that although they don't happen often, these low probability events do happen and it is risk analysis that helps determine whether these potential events are within an investor's risk tolerance. (For related reading, see Personalizing Risk Tolerance and Risk Tolerance Only Tells Half The Story.)

A method to circumvent the problems inherent in the previous examples is to run an extreme number of trials of a multivariate model. Random factor analysis is completed by running thousands and even hundreds of thousands of independent trials with a computer to assign values to the factors in a random fashion. The most common type of random factor analysis is called "Monte Carlo" analysis, where factor values are not estimated but are chosen randomly from a set bounded by the variable's own probability distribution. (To learn more about this analysis, read Introduction To Monte Carlo Simulation.)

Standards set for reporting investment performance ensure that investors are provided with the risk profile (variability of performance) for past performance of investments. Because past performance does not have any bearing on future risk or return, it is up to the investor or business owners to determine the future risk of their investments by creating pro-forma models. The output of any forecast will only produce the expected or mean value of that initiative - the outcome that the analyst believes has the highest probability of occurrence. By conducting scenario analysis an investor can produce a risk profile for a forecasted investment and create a basis for comparing prospective investments.

Break-Even Analysis


Related Articles
  1. Options & Futures

    Multivariate Models: The Monte Carlo Analysis

    This decision-making tool integrates the idea that every decision has an impact on overall risk.
  2. Fundamental Analysis

    Explaining the Monte Carlo Simulation

    Monte Carlo simulation is an analysis done by running a number of different variables through a model in order to determine the different outcomes.
  3. Fundamental Analysis

    Guide To Excel For Finance: Advanced Calculations

    Monte Carlo SimulationIn its most basic form, the Monte Carlo simulation seeks to simulate real-world outcomes by showing a range of outcomes for a given variable set. For example, in the casino ...
  4. Retirement

    Planning Your Retirement Using The Monte Carlo Simulation

    You can use the Monte Carlo Simulation to improve your retirement planning.
  5. Fundamental Analysis

    What Can The Monte Carlo Simulation Do For Your Portfolio?

    A Monte Carlo simulation allows analysts and advisors to convert investment chances into choices. The advantage of Monte Carlo is its ability to factor in a range of values for various inputs.
  6. Options & Futures

    Stock-Picking Strategies: Value Investing

    Value investing is one of the best known stock-picking methods. In the 1930s, Benjamin Graham and David Dodd, finance professors at Columbia University, laid out what many consider to be the ...
  7. Investing Basics

    Redefining Investor Risk

    Changing the way you think about time and risk can change the way you invest.
  8. Fundamental Analysis

    Value Investing Strategies in a Volatile Market

    Volatile markets are a scary time for uneducated investors, but value investors use volatile periods as an opportunity to buy stocks at a discount.
  9. Investing Basics

    Low Vs. High-Risk Investments For Beginners

    Understanding risk is key to better investing.
  10. Fundamental Analysis

    Quantitative Analysis Of Hedge Funds

    Hedge fund analysis requires more than just the metrics used to analyze mutual funds.
RELATED TERMS
  1. Expected Value

    Anticipated value for a given investment. In statistics and probability ...
  2. Sensitivity Analysis

    Sensitivity analysis is a technique used to determine how different ...
  3. Random Variable

    A variable whose value is unknown or a function that assigns ...
  4. Multivariate Model

    A popular statistical tool that uses multiple variables to forecast ...
  5. Shadowing

    The process of creating values for variables that don't rely ...
  6. Monte Carlo Simulation

    Monte Carlo simulations are used to model the probability of ...
RELATED FAQS
  1. What percentage of a diversified portfolio should be exposed to the insurance sector?

    Learn how it is critical to innovate and improve financial models and techniques used in quantitative analysis, and understand ... Read Answer >>
  2. What variables are most important when making a prediction through sensitivity analysis?

    Explore sensitivity analysis and how this method considers different variables to determine a course of action based on statistical ... Read Answer >>
  3. What is the minimum number of simulations that should be run in Monte Carlo Value ...

    Find out how many simulations should be run at minimum for an accurate value at risk when using the Monte Carlo method of ... Read Answer >>
  4. What can cause an asset to trade above its market value?

    Learn some of the factors that can affect the price of an investment asset and the major reasons why an asset might trade ... Read Answer >>
  5. What are some of the limitations of only looking at the rate of return for an investment?

    Learn why only reviewing the rate of return for an investment poses a risk to the investor and what additional factors should ... Read Answer >>
  6. What is backtesting in Value at Risk (VaR)?

    Learn about the value at risk of a portfolio and how backtesting is used to measure the accuracy of value at risk calculations. Read Answer >>
Hot Definitions
  1. MACD Technical Indicator

    Moving Average Convergence Divergence (or MACD) is a trend-following momentum indicator that shows the relationship between ...
  2. Over-The-Counter - OTC

    Over-The-Counter (or OTC) is a security traded in some context other than on a formal exchange such as the NYSE, TSX, AMEX, ...
  3. Quarter - Q1, Q2, Q3, Q4

    A three-month period on a financial calendar that acts as a basis for the reporting of earnings and the paying of dividends.
  4. Weighted Average Cost Of Capital - WACC

    Weighted average cost of capital (WACC) is a calculation of a firm's cost of capital in which each category of capital is ...
  5. Basis Point (BPS)

    A unit that is equal to 1/100th of 1%, and is used to denote the change in a financial instrument. The basis point is commonly ...
  6. Sharing Economy

    An economic model in which individuals are able to borrow or rent assets owned by someone else.
Trading Center