### What is Descriptive Statistics

Descriptive statistics are brief descriptive coefficients that summarize a given data set, which can be either a representation of the entire or a sample of a population. Descriptive statistics are broken down into measures of central tendency and measures of variability (spread). Measures of central tendency include the mean, median, and mode, while measures of variability include the standard deviation, variance, the minimum and maximum variables, and the kurtosis and skewness.

#### What is Descriptive Statistics?

### BREAKING DOWN Descriptive Statistics

Descriptive statistics, in short, help describe and understand the features of a specific data set by giving short summaries about the sample and measures of the data. The most recognized types of descriptive statistics are the mean, median, and mode, which are used at almost all levels of math and statistics. However, there are less-common types of descriptive statistics that are still very important.

People use descriptive statistics to repurpose hard-to-understand quantitative insights across a large data set into bite-sized descriptions. A student's grade point average (GPA), for example, provides a good understanding of descriptive statistics. The idea of a GPA is that it takes data points from a wide range of exams, classes, and grades, and averages them together to provide a general understanding of a student's overall academic abilities. A student's personal GPA reflects his mean academic performance.

### Measures of Descriptive Statistics

All descriptive statistics are either measures of central tendency or measures of variability. These two measures use graphs, tables, and general discussions to help people understand the meaning of the analyzed data.

Measures of central tendency describe the center position of a distribution for a data set. A person analyzes the frequency of each data point in the distribution and describes it using the mean, median, or mode, which measures the most common patterns of the analyzed data set.

Measures of variability, or the measures of spread, aid in analyzing how spread-out the distribution is for a set of data. For example, while the measures of central tendency may give a person the average of a data set, it does not describe how the data is distributed within the set. So, while the average of the data may be 65 out of 100, there can still be data points at both 1 and 100. Measures of variability help communicate this by describing the shape and spread of the data set. Range, quartiles, absolute deviation, and variance are all examples of measures of variability.