DEFINITION of 'Kurtosis'
Like skewness, kurtosis is a statistical measure that is used to describe the distribution. Whereas skewness differentiates extreme values in one versus the other tail, kurtosis measures extreme values in either tail. Distributions with large kurtosis exhibit tail data exceeding the tails of the normal distribution (e.g., five or more standard deviations from the mean). Distributions with low kurtosis exhibit tail data that is generally less extreme than the tails of the normal distribution.
For investors, high kurtosis of the return distribution implies that the investor will experience occasional extreme returns (either positive or negative), more extreme than the usual + or  three standard deviations from the mean that is predicted by the normal distribution of returns. This phenomenon is known as kurtosis risk.
BREAKING DOWN 'Kurtosis'
Kurtosis is a measure of the combined weight of a distribution's tails relative to the center of the distribution. When a set of approximately normal data is graphed via a histogram, it shows a bell peak and most data within + or  three standard deviations of the mean. However, when high kurtosis is present, the tails extend farther than the + or  three standard deviations of the normal bellcurved distribution.
Kurtosis is sometimes confused with a measure of the peakedness of a distribution. However, kurtosis is a measure that describes the shape of a distribution's tails in relation to its overall shape. A distribution can be infinitely peaked with low kurtosis, and a distribution can be perfectly flattopped with infinite kurtosis. Thus, kurtosis measures “tailedness,” not “peakedness.”
Types of Kurtosis
There are three categories of kurtosis that can be displayed by a set of data. All measures of kurtosis are compared against a standard normal distribution, or bell curve.
The first category of kurtosis is a mesokurtic distribution. This distribution has kurtosis statistic similar to that of the normal distribution, meaning that the extreme value characteristic of the distribution is similar to that of a normal distribution.
The second category is a leptokurtic distribution. Any distribution that is leptokurtic displays greater kurtosis than a mesokurtic distribution. Characteristics of this type of distribution is one with long tails (outliers). The prefix of "lepto" means "skinny," making the shape of a leptokurtic distribution easier to remember. The “skinniness” of a leptokurtic distribution is a consequence of the outliers, which stretch the horizontal axis of the histogram graph, making the bulk of the data appear in a narrow (“skinny”) vertical range. Some have thus characterized leptokurtic distributions as “concentrated toward the mean,” but the more relevant issue (especially for investors) is that there are occasional extreme outliers that cause this “concentration” appearance. Examples of leptokurtic distributions are the Tdistributions with small degrees of freedom.
The final type of distribution is a platykurtic distribution. These types of distributions have short tails (paucity of outliers). The prefix of "platy" means "broad," and it is meant to describe a short and broadlooking peak, but this is an historical error. Uniform distributions are platykurtic and have broad peaks, but the beta(.5,1) distribution is also platykurtic and has an infinitely pointy peak. The reason both these distributions are platykurtic is that their extreme values are less than that of the normal distribution. For investors, platykurtic return distributions are stable and predictable, in the sense that there will rarely (if ever) be extreme (outlier) returns.

Normal Distribution
The normal distribution is a continuous probability distribution ... 
Excess Kurtosis
Excess kurtosis describes a probability distribution with fat ... 
Tail Risk
Tail risk is portfolio risk that arises when the possibility ... 
Probability Distribution
A probability distribution is a statistical function that describes ... 
Statistics
Statistics is a type of mathematical analysis involving the use ... 
Distribution
Distribution occurs when a mutual fund, company or retirement ...

Investing
Understanding Quantitative Analysis Of Hedge Funds
Learn how hedge fund performance quantitatively requires metrics such as absolute and relative returns, risk measurement, and benchmark performance ratios. 
Investing
Stock Market Risk: Wagging The Tails
The bell curve is an excellent way to evaluate stock market risk over the long term. 
Investing
Optimize your portfolio using normal distribution
Normal or bell curve distribution can be used in portfolio theory to help portfolio managers maximize return and minimize risk. 
Investing
What's Skewness?
Skewness describes how a data distribution leans. 
Investing
Fat Tail Risk Makes Global Warming Scarier
The cost of global warming does not take into account climate changerelated catastrophes. Here's where fattail distributions come in. 
Financial Advisor
Tips to Help Your Clients Make the Most of RMDs
Here are some tips for advising clients faced with taking required minimum distributions.

What is a "non linear" exposure in Value at Risk (VaR)?
Learn about nonlinearity and value at risk and what a nonlinear exposure is in the value at risk of a portfolio of nonlinear ... Read Answer >>