What is a 'One-Tailed Test'

A one-tailed test is a statistical test in which the critical area of a distribution is one-sided so that it is either greater than or less than a certain value, but not both. If the sample being tested falls into the one-sided critical area, the alternative hypothesis will be accepted instead of the null hypothesis.

One-tailed test is also known as a directional hypothesis or directional test.

BREAKING DOWN 'One-Tailed Test'

A basic concept in inferential statistics is hypothesis testing. Hypothesis testing is run to determine whether a claim is true or not, given a population parameter. A test that is conducted to show whether the mean of the sample is significantly greater than and significantly less than the mean of a population is considered a two-tailed test. When the testing is set up to show that the sample mean would be higher or lower than the population mean, this is referred to as a one-tailed test. The one-tailed test gets its name from testing the area under one of the tails (sides) of a normal distribution, although the test can be used in other non-normal distributions as well.

The first step in hypothesis testing is establishing the null and alternative hypotheses before the one-tailed test can be performed. A null hypothesis is the claim that the researcher hopes to reject. The alternative hypothesis is the measurement that is supported by rejecting the null hypothesis. If an analyst wants to prove that a portfolio manager outperformed the S&P 500 index in a given year, let's use 16.91% as an example, he may set up the null (H0) and alternative (Ha) hypotheses as:

H0: μ ≤ 16.91

Ha: μ > 16.91

The null hypothesis is the measurement that the analyst hopes to reject. The alternative hypothesis is the claim made by the analyst that the portfolio manager performed better than the S&P 500. If the outcome of the one-tailed test results in rejecting the null, the alternative hypothesis will be supported. On the other hand, if the outcome of the test fails to reject the null, the analyst may carry out further analysis and investigation into the portfolio manager’s performance.

The region of rejection is on only one side of the sampling distribution in a one-tailed test. To determine how the portfolio’s return on investment compares to the market index, the analyst must run an upper-tailed significance test in which extreme values fall in the upper tail (right side) of the normal distribution curve. The one-tailed test conducted in the upper or right tail area of the curve will show the analyst how much higher the portfolio return is than the index return and whether the difference is significant.

Determining Significance

To determine how significant the difference in returns is, a significance level must be specified. The significance level is almost always represented by the letter "p" which stands for probability. The level of significance is the probability of incorrectly concluding that the null hypothesis is false. The significance value used in a one-tailed test is either 1%, 5% or 10%, although any other probability measurement can be used at the discretion of the analyst or statistician. The probability value is calculated with the assumption that the null hypothesis is true. The lower the p-value, the stronger the evidence that the null hypothesis is false.

If the resulting p-value is less than 5%, then the difference between both observations is statistically significant, and the null hypothesis is rejected. Following our example above, if p-value = 0.03, or 3%, then the analyst can be 97% confident that the portfolio returns did not equal or fall below the return of the market for the year. He will, therefore, reject H0 and support the claim that the portfolio manager outperformed the index. The probability calculated in only one tail of a distribution is half the probability of a two-tailed distribution if similar measurements were tested using both hypothesis testing tools.

When using a one-tailed test, the analyst is testing for the possibility of the relationship in one direction of interest, and completely disregarding the possibility of a relationship in another direction. Using our example above, the analyst is interested in whether a portfolio’s return is greater than the market’s. In this case, he does not need to statistically account for the situation where the return on investment is less than the return of the S&P 500 index. For this reason, a one-tailed test is only appropriate when it is not important to test the outcome at the other end of a distribution.

  1. Two-Tailed Test

    A two-tailed test is a statistical test in which the critical ...
  2. Beta Risk

    Beta risk is the probability that a false null hypothesis will ...
  3. Goodness-Of-Fit

    The goodness of fit test is a statistical hypothesis test to ...
  4. Adaptive Market Hypothesis

    The adaptive market hypothesis combines principles of the Efficient ...
  5. Adaptive Expectations Hypothesis

    Adaptive expectations hypothesis is a theory that states individuals ...
  6. Degrees of Freedom

    Degrees of freedom are the number of values in a study that have ...
Related Articles
  1. Investing

    Efficient Market Hypothesis

    An investment theory that states it is impossible to "beat the market".
  2. Personal Finance

    Jump Start Your Financial Career With The BAT

    The BAT is quickly becoming known in the job market as a tool to provide a window into the minds of those seeking financial jobs.
  3. Investing

    Efficient Market Hypothesis: Is The Stock Market Efficient?

    Deciding whether it's possible to attain above-average returns requires an understanding of EMH.
  4. Personal Finance

    2 Ways To Finish Undergraduate And MBA Programs Faster

    Testing out of courses and challenging course credit decisions can allow you to save money and time at college.
  5. Investing

    Diversification Strategies: Stocks Vs. Gold

    When it comes to asset allocation, is gold a solid diversifying asset class?
  6. Insights

    The Fed's Stress Test On Banks

    The Fed announced the results of its test to see which banks could put the entire financial system at risk.
  7. Trading

    Trading On The Psychology Of Round Numbers (HD, MNST)

    Price action around big round numbers, like 10, 100 and 1000 set up special trading opportunities that take advantage of shifting crowd psychology.
  8. Investing

    Why Asset Managers Oppose Mutual Fund Stress Tests

    The Financial Stability Board wants to implement a financial stress test for mutual funds for the G20 nations. Here's why it is an unpopular idea.
  9. Investing

    Does Weather Affect the Stock Market?

    Find out if the weather can change the stock market, and why economists and meteorologists will probably always struggle to know the answer.
  1. What assumptions are made when conducting a t-test?

    Learn what a t-test is and discover the five standard assumptions made regarding the validity of sampling and data used in ... Read Answer >>
  2. How Does an Efficient Market Affect Investors?

    The efficient market hypothesis refers to aggregated decisions of many market participants. Read Answer >>
  3. What are the differences between weak, strong and semi-strong versions of the Efficient ...

    Discover how the efficient market theory is broken down into three versions, the hallmarks of each and the anomalies that ... Read Answer >>
  4. What is stress testing in Value at Risk (VaR)?

    Discover the difference between Value at Risk, or VaR, and stress testing, and learn how the two concepts might be used together ... Read Answer >>
  5. What does the Efficient Market Hypothesis have to say about fundamental analysis?

    Find out what the efficient markets hypothesis has to say about fundamental analysis and how recent finance research has ... Read Answer >>
Trading Center