What is a 'Probability Distribution'
A probability distribution is a statistical function that describes all the possible values and likelihoods that a random variable can take within a given range. This range will be bounded between the minimum and maximum possible values, but precisely where the possible value is likely to be plotted on the probability distribution depends on a number of factors. These factors include the distribution's mean (average), standard deviation, skewness and kurtosis. Perhaps the most common probability distribution is the normal distribution, or "bell curve," although several distributions exist that are commonly used. Typically, the data generating process of some phenomenon will dictate its probability distribution.This process is called the probability density function.
Probability distributions can also be used to create cumulative distribution functions (CDFs), which adds up the probability of occurrences cumulatively and will always start at zero and end at 100 percent.
Academics, financial analysts and fund managers alike may determine a particular stock's probability distribution to evaluate the possible expected returns that the stock may yield in the future. The stock's history of returns, which can be measured from any time interval, will likely be composed of only a fraction of the stock's returns, which will subject the analysis to sampling error. By increasing the sample size, this error can be dramatically reduced.
BREAKING DOWN 'Probability Distribution'
Types of Probability Distributions
There are many different classifications of probability distributions. Some of them include the normal distribution, chi square distribution, binomial distribution, and Poisson distribution. The different probability distributions serve different purposes and represent different data generation processes. The binomial distribution, for example, evaluates the probability of an event occurring several times over a given number of trials and given the event's probability in each trial. and may be generated by keeping track of how many free throws a basketball player makes in a game, where 1 = a basket and 0 = a miss. Another typical example would be to use a fair coin and figuring the probability of that coin coming up heads in 10 straight flips. A binomial distribution is discrete, as opposed to continuous, since only 1 or 0 is a valid response.
The most commonly used distribution is the normal distribution, which is used frequently in finance, investing, science, and engineering. The normal distribution is fully characterized by its mean and standard deviation, meaning the distribution is not skewed and does exhibit kurtosis. This makes the distribution symmetric and it is depicted as a bellshaped curve when plotted. A normal distribution is defined by a mean (average) of zero and a standard deviation of 1.0, with a skew of zero and kurtosis = 3. In a normal distribution, approximately 68 percent of the data collected will fall within +/ one standard deviation of the mean; approximately 95 percent within +/ two standard deviations; and 99.7 percent within three standard deviations. Unlike the binomial distribution, the normal distribution is continuous, meaning that all possible values are represented (as opposed to just 0 and 1 with nothing in between).
Probability Distributions Used in Investing
Stock returns are often assumed to be normally distributed but in reality, they exhibit kurtosis with large negative and positive returns seeming to occur more than would be predicted by a normal distribution. In fact, because stock prices are bounded by zero but offer a potential unlimited upside, the distribution of stock returns has been described as lognormal. This shows up on a plot of stock returns with the tails of the distribution having greater thickness.
Probability distributions are often used in risk management as well to evaluate the probability and amount of losses that an investment portfolio would incur based on a distribution of historical returns. One popular risk management metric used in investing is valueatrisk (VaR). VaR yields the minimum loss that can occur given a probability and time frame for a portfolio. Alternatively, an investor can get a probability of loss for an amount of loss and time frame using VaR. Misuse and overreliance on VaR has been implicated as one of the major causes of the 2008 financial crisis.

Platykurtosis
Platykurtosis is a statistical term that refers to the relative ... 
Uniform Distribution
In statistics, a type of probability distribution in which all ... 
Mesokurtic
Mesokurtic is a statistical term describing the shape of a probability ... 
Distribution
Distribution occurs when a mutual fund, company or retirement ... 
Leptokurtic
A statistical distribution where there are extreme points(or ... 
Symmetrical Distribution
Symmetrical distribution is evident when values of variables ...

Trading
Trading with Gaussian models of statistics
The study of statistics originated from Carl Friedrich Gauss and helps us understand markets, prices and probabilities, among other applications. 
Investing
Optimize your portfolio using normal distribution
Normal or bell curve distribution can be used in portfolio theory to help portfolio managers maximize return and minimize risk. 
Investing
Bet Smarter With the Monte Carlo Simulation
This technique can reduce uncertainty in estimating future outcomes. 
Investing
Scenario Analysis Provides Glimpse Of Portfolio Potential
This statistical method estimates how far a stock might fall in a worstcase scenario. 
Investing
Multivariate Models: The Monte Carlo Analysis
This decisionmaking tool integrates the idea that every decision has an impact on overall risk. 
Trading
The Normal Distribution Table, Explained
The normal distribution formula is based on two simple parameters  mean and standard deviation 
Financial Advisor
Tough Times: Should You Dip Into Your Qualified Plan?
401(k)s, pensions and profitsharing plans can be a source of cash, but there are consequences to this option.